
1

Cross-Cluster Networking to Support Extended
Reality Services

Theodoros Theodoropoulos, Luis Rosa, Abderrahmane Boudi, Tarik Zakaria Benmerar, Antonios Makris,
Tarik Taleb, Senior Member, IEEE, Luis Cordeiro, Konstantinos Tserpes and JaeSeung Song Senior

Member, IEEE

Abstract—Extended Reality (XR) refers to a class of contemporary services that are intertwined with a plethora of rather demanding
Quality of Service (QoS) and functional requirements. Despite Kubernetes being the de facto standard in terms of deploying and
managing contemporary containerized microservices, it lacks adequate support for cross-cluster networking, hindering
service-to-service communication across diverse cloud domains. Although there are tools that may be leveraged alongside Kubernetes
in order to establish multi-cluster deployments, each one of them comes with its own drawbacks and limitations. The purpose of this
article is to explore the various potential technologies that may facilitate multi-cluster deployments and to propose how they may be
leveraged to provide a cross-cluster connectivity solution that caters to the intricacies of XR services. The proposed solution is based
on the use of two open-source frameworks, namely Cluster API for multi-cluster management, and Liqo for multi-cluster
interconnectivity. The efficiency of this approach is evaluated in the context of two experiments. This work is the first attempt at
proposing a solution for supporting multi-cluster deployments in a manner that is aligned with the requirements of XR services.

Index Terms—Kubernetes, Cloud, Edge, Continuum, Cluster API, Liquid Computing, Liqo, Network, XR, Immersive Services, 5G, and
6G.

✦

1 INTRODUCTION

Contemporary applications are deployed in the form
of containerized microservices. To facilitate the underly-
ing orchestration complexity of containerized microservice
deployments, the notion of container orchestration frame-
works was introduced. Kubernetes [1] is an extensible open-
source orchestration platform for automating software de-
ployment, scaling, and management of containerised work-
loads and services and is considered to be the standardized
way of orchestrating containers and deploying distributed
applications. While Kubernetes is extremely popular in
cloud computing environments, lightweight versions, such
as K3S, are often deployed in Edge computing environ-
ments.

Furthermore, contemporary applications, such as eX-
tended Reality (XR), are often intertwined with a plethora of

• Theodoros Theodoropoulos, Antonios Makris, and Konstantinos Tserpes
are with the Department of Informatics and Telematics, Harokopio
University of Athens, 17778 Tavros, Greece and with the School of
Electrical and Computer Engineering, National Technical University of
Athens, 15773 Zografou, Greece

• Luis Rosa and Luis Cordeiro are with OneSource, 3030-384 Coimbra,
Portugal

• Abderrahmane Boudi, and Tarik Zakaria Benmerar are with ICTFICIAL
OY, 02130 Espoo, Finland

• Tarik Taleb is with the Electrical Engineering and Information Technology,
Ruhr University Bochum(RUB), 44801 Bochum, Germany, and also
with the Department of Convergence Engineering for Intelligent Drone,
Sejong University, Seoul 05006, South Korea

• JaeSeung Song is with the Department of Convergence Engineering for
Intelligent Drone, Sejong University, Seoul 05006, South Korea.

demanding Quality of Service (QoS) and functional require-
ments. The backbone of XR applications relies on providing
an immersive experience for the various end-users. Provid-
ing acceptable levels of immersion requires extremely low
latencies and high bandwidths. The scientific literature has
showcased that for an end-user experience to be considered
satisfactory, the end-to-end latency shall not be greater than
15ms, and the available bandwidth should be scalable up
to 30 Gbps [2]. Furthermore, XR applications are extremely
demanding in terms of computational resources since they
incorporate functionalities such as the rendering of complex
3D models and the use of highly-defined graphics.

Another important requirement of XR services is the
need for end-user equipment to be as light-weight and
inexpensive as possible. While cloud computing can shift
the computational adequacy burden to various remote re-
sources, thus allowing end-user devices to be mobile and
cost-effective, it cannot fully support immersive applica-
tions that require low latency and high bandwidth since
the end-user devices are usually far from the cloud servers.
This fact leads to processing and network overheads, thus
resulting in low performance and high latency. Edge com-
puting aims at reducing the amount of data that needs
to be transmitted to remote clouds and allows for data
processing near the data sources. Thus, edge computing
can provide faster response times, higher transfer rates, and
better scalability and availability. Consequently, running XR
services in a distributed fashion across the cloud-edge fabric
would benefit application developers and help keep up with
the aforementioned QoS requirements [3].

Such an XR service deployment scenario that spans
across the cloud-edge fabric is depicted in Fig. 1, whereby
some distant users must collaborate in a virtual reality en-



2

Fig. 1. Multi-Cluster Example Use Case.

vironment and would require many services to run concur-
rently over a wide area. As stated before, XR services require
extremely low latency, which means that part of the service
must be deployed close to stakeholders (i.e., domains B and
C in Fig. 1). In addition, by having many users collaborate
closely, communications paths need to be spun between
the deployed services in a peer-to-peer fashion; whilst also
communicating with some carefully placed shared services,
e.g., used for security or synchronization purposes. Other
resource-intensive services can also be placed in the cloud.
It is clear that for this relatively simple, yet realistic, XR
service, and with the many shifting requirements of the
sub-services and their placement, leveraging cloud-edge
deployments would greatly support the provisioning of
such services.

Aside from XR services, cross-cluster management and
connectivity are pivotal in diverse domains such as wireless
networks, edge computing, 5G applications, Service Func-
tion Chains (SFCs) ,and the scheduling of containerized
workflows. Effective cross-cluster strategies enable seamless
communication and coordination across disparate systems,
ensuring optimal resource utilization and enhanced perfor-
mance. In wireless networks and 5G, cross-cluster connec-
tivity supports robust, low-latency communication essential
for real-time applications. In edge computing, it enables
efficient data processing and service delivery by integrat-
ing edge nodes. Similarly, for containerized workflows,
cross-cluster orchestration ensures scalability, and efficient
workload distribution across multiple clusters, leading to
improved operational efficiency. Finally, in the frame of
SFCs, it enables the chaining of network services across dif-
ferent clusters, facilitating complex service delivery across
distributed environments.

Although it is technically feasible for a single Kubernetes
cluster to span across various edge & cloud sites that may
be at vastly different locations, multi-cluster deployments
offer numerous advantages. These include the ability to
shift workloads between clusters to prevent congestion or
failure, minimizing downtimes by seamlessly transferring
workloads to alternative clusters, overcoming size con-
straints of single-cluster deployments, ensuring compliance
with country/region-specific regulations for data storage in
cloud-based workloads, allowing service providers flexibil-

ity in choosing algorithms and vendors, reducing costs, and
enabling services to be distributed across cloud, edge, and
proprietary infrastructure to avoid vendor lock-in. This ap-
proach facilitates continuous service optimization based on
user satisfaction, running costs, and energy consumption.
To ensure seamless cross-cluster communications in multi-
cluster deployments, attention is needed for both cluster
management and connectivity between clusters.

Unfortunately, contemporary versions of Kubernetes are
unable to facilitate multi-cluster deployments. This lim-
itation extends to two fronts, the first one of which is
the orchestration and management of the multiple clusters
that facilitate the various XR services. The second one is
the communication among these XR services, across clus-
ter boundaries. This endeavour becomes quite challenging
when considering that XR services, on top of the aforemen-
tioned QoS requirements, are characterized by functional
requirements, such as the need for User Datagram Protocol
(UDP) support that serves as the cornerstone for numerous
streaming use-cases, which are of paramount importance
in the frame of XR services [4]. Furthermore, edge clusters
are usually limited in terms of computational resources,
and thus any attempt at implementing cross-cluster net-
working in a manner that spans across the cloud-edge
fabric should take resource consumption into consideration
(especially in the case of resource-intensive services, such
as XR). Finally, to fully harvest the benefits of multi-cluster
deployments, an ideal solution should facilitate dynamic,
multi-ownership deployment scenarios and have a singular
cross-cluster control plane to optimally schedule the various
workloads. Thus, the ideal solution for supporting cross-
cluster networking for XR services should be capable of
fulfilling the following requirements:

• to not significantly increase resource consumption,
• to not contribute towards significantly increasing

end-to-end latency,
• to support UDP,
• to have a singular cross-cluster control plane for

optimal workload scheduling, and
• to facilitate dynamic, multi-ownership deployment

scenarios.

Towards achieving this goal, this paper is dedicated
to examining numerous state-of-the-art multi-cluster con-
nectivity & management frameworks, and to proposing a
novel solution that caters to the intricacies of XR services.
More specifically, the proposed solution consists of two
contemporary frameworks whose modus operandi is based
on the support of multi-cluster deployments. These frame-
works are Cluster API for deploying and managing multiple
clusters, and Liqo for cross-cluster internetworking.

2 MULTI-CLUSTER MANAGEMENT

Multi-cluster management is a critical aspect of modern
computing infrastructure, enabling organizations to effi-
ciently oversee and coordinate multiple clusters of re-
sources.

KubeFed [5] is a multi-cluster management framework
that enables each cluster to leverage its own local master.



3

Unfortunately, this approach comes at the cost of addi-
tional software resources to support localised autonomy and
synchronization across the various clusters. Furthermore,
KubeFed supports multi-vendor environments, but the level
of support may vary depending on the specific vendor and
their level of compatibility with the Kubernetes API.

Karmada [6], on the other hand, is based on a different
approach that utilizes a custom API Server. This server
operates as a centralized control point and resembles the
standard Kubernetes API, while high-level resources like
Deployments are handled by custom controllers instead of
following the standard workflow. This is determined by
policy constraints set through Custom Resource Definitions.
However, this approach does not fully adhere to Kuber-
netes, so administrators cannot manage lower-level objects
such as pods in the context of effective monitoring and
debugging.

Terraform [7], a cloud-agnostic infrastructure provision-
ing tool, allows the creation of resources from various cloud
services using a unified infrastructure-as-code approach.
Despite its declarative approach for defining the desired
end-state of infrastructure, the use of a single end-state
file can lead to performance issues, particularly in multi-
cluster deployments outside the same network. Addition-
ally, unlike the other explored multi-cluster management
tools, Terraform is not free, which could be a deterrent for
smaller application developer groups.

Cluster API [8] is a free and open-source framework that
brings Kubernetes-style APIs and support for the lifecycle
management of (workload) Kubernetes clusters. Cluster API
is not limited to a specific infrastructure vendor but is de-
signed to accommodate different cloud providers. This en-
ables consistency, portability, automation and repeatability
in cluster deployments, ultimately widening the possibility
of orchestrating heterogeneous and multi-cloud domains in
a unified and vendor-neutral fashion.

3 MULTI-CLUSTER INTERCONNECTIVITY

While the aforementioned frameworks are capable of es-
tablishing multi-cluster management, they do not provide
any form of multi-cluster interconnectivity functionality.
Thankfully, various cloud-native solutions have emerged
to provide such functionalities. In the frame of this work,
we propose a taxonomy of tools enabling interconnectivity
across Kubernetes clusters. This taxonomy mainly focuses on
two categories: Service Mesh based approaches with multi-
cluster support and Overlay Networks. The range of enabling
tools is selected based on a combination of their perceived
maturity and documentation quality, the empirical experi-
ence of the authors of this article, and their availability in
open-source version. All of the following frameworks are
capable of achieving multi-cluster connectivity. However,
the ideal solution should be capable of fulfilling all of the
aforementioned QoS, and functional requirements that are
associated with XR services.

3.1 Service Mesh Solutions
A service mesh is a dedicated network infrastructure layer
that manages communication between services in an appli-
cation. It manages service requests, providing features like

service discovery, load balancing, encryption, and failover.
A service mesh typically relies on proxies (so-called side-
cars) to form a mesh at the component level or, for instance,
the host level.

Istio [9], Linkerd [10] and Consul [11] are service mesh
platforms designed for microservices integration, traffic
management, policy enforcement, and telemetry data ag-
gregation. They employ Sidecar proxies to handle traffic be-
tween services within a cluster, forming a microservice mesh
offering service discovery, Layer 7 routing, circuit breakers,
policy enforcement, and telemetry recording. However, a
notable limitation is that, operating at Layer 7, they lack
support for UDP traffic, a critical aspect for XR services that
heavily rely on UDP for operations like video streaming.
While a potential solution, such as CONNECT UDP, has
been proposed, there is currently no practical option for
supporting UDP communication in Layer 7 service meshes.
Additionally, service mesh solutions with sidecar proxies
introduce high application and latency overhead, which can
be prohibitive for latency-sensitive applications.

The aforementioned service mesh solutions are capa-
ble of tackling challenges related to Layer 7 network-
ing, but are insufficient to facilitate use cases requiring
Layer 2/3 networking. On the contrary, Network Ser-
vice Mesh (NSM) [12] offers a cloud-native network so-
lution for microservices-based applications, emphasizing
programmable and intelligent networking for Layer 2/3
connectivity. However, similar to other service mesh solu-
tions, NSM lacks a cross-cluster control plane, preventing
dynamic workload scheduling across diverse locations for
optimal performance.

3.2 Overlay Network Solutions
An overlay network is a virtual (or logical) network that
is established on top of an existing physical network. All
nodes in an overlay network are connected to one another
using virtual (or logical) links. Each link corresponds to a
specified path in the underlying network topology. Over-
lay Network approaches use peering strategies (e.g., using
VPN tunnels) to automatically interconnect clusters (and
services). The core idea behind overlay networks is the
facilitation of communication among microservices regard-
less of their location in a multi-cloud environment, through
the overlay network. Whether for federation or edge-cloud
scenarios, these dynamic network topologies can also be
helpful as a building block that does not enforce a specific
orchestration platform, but allows seamless communication
across multiple sites.

Submariner [13] is a multi-cluster networking solution
designed for cloud-native applications, offering seamless
connectivity between Kubernetes clusters across various lo-
cations. It provides key functionalities such as Cross-cluster
Layer 3 connectivity, service discovery, and network policy
enforcement, enabling communication between services in
different clusters, even across different cloud providers or
data centers. While Submariner excels at achieving cross-
cluster connectivity, it does not address workload orches-
tration and observability, leaving these aspects to static
approaches or external tools.

Skupper [14] utilizes Virtual Application Networks
(VANs) to address multi-cluster communication challenges,



4

creating virtual networks connecting applications and ser-
vices in a hybrid cloud at Layer 7. In Kubernetes, Skupper
forms a network with each namespace having a Skupper
instance, constantly sharing information about exposed ser-
vices to create awareness across instances. Through anno-
tation, Skupper exposes services, creating proxy endpoints
available in all network namespaces, and, like many service
mesh solutions, operates on Layer 7 networking, lacking
support for UDP.

Liqo [15] is a sophisticated open-source framework
designed to enable seamless connectivity among clusters
distributed across various geographical locations, encom-
passing on-premises environments, edge devices, and cloud
infrastructures. Operating on a peer-to-peer model, the
interconnection between peered clusters is implemented
through secure VPN tunnels, which are dynamically estab-
lished at the end of the peering process. The architecture
leverages a virtualization approach where remote clusters
are abstracted as virtual nodes within the local cluster. This
abstraction allows for transparent communication between
interconnected clusters, regardless of the underlying Con-
tainer Network Interface (CNI) plugin. In the context of
bidirectional peering, Liqo creates virtual nodes in each
cluster, serving as representations of the resources provided
by the remote cluster.

Furthermore, Liqo introduces the concept of offloading,
enabling the reflection and the execution of workloads
such as namespaces, services, and pods on these virtual
nodes. This capability facilitates the exposure of services
and execution of workloads in remote clusters. For instance,
when a namespace is offloaded, Liqo dynamically creates a
twin namespace in the remote cluster. This twin namespace
allows pods and services to run seamlessly in a shared,
cross-cluster environment. In the pod offloading scenario,
the actual execution of pods and associated services is
moved to a peered cluster, demonstrating the flexibility to
optimize resource usage across clusters. This is particularly
useful for demanding computing tasks like video process-
ing, enabling efficient workload distribution based on the
capabilities of different clusters. On the other hand, service
offloading involves exposing only Kubernetes services on a
remote cluster while retaining pod execution in the original
cluster. This strategy allows for more selective offloading,
giving flexibility in optimizing specific components of the
application.

4 PROPOSED SOLUTION

Out of all the multi-cluster connectivity solutions that were
explored in the previous section, only Liqo manages to
satisfy all of the functional requirements that are associ-
ated with XR services in terms of providing support for
UDP, establishing a singular cross-cluster control plane
for optimal workload scheduling, and facilitating dynamic,
multi-ownership deployment scenarios. Thus, Liqo has
been selected as the backbone of the proposed solution. The
proposed solution for establishing cross-cluster network-
ing to support XR services consists of two contemporary
frameworks that are capable of supporting multi-cluster
deployments. These frameworks are Cluster API for de-
ploying and managing multiple clusters, and Liqo for cross-

cluster internetworking. To the best of our knowledge, this
combination is novel and unexplored from both the design
and implementation viewpoints.

An advanced implementation of the proposed solution
that is based on Observe-Orient-Decide-Act (OODA) loops
is depicted in Fig.2. The management cluster is responsible
for instantiating the infrastructure and deploying applica-
tions on top of that infrastructure. It ensures observability
by offering a monitoring framework with monitoring agents
natively deployed alongside the infrastructure and appli-
cations. The monitoring framework utilizes Prometheus1

and Thanos2, both of which natively support Kubernetes
clusters. It features a distributed architecture where each
cluster has a monitoring server deployed to scrape data
from local infrastructure nodes and applications. The man-
agement cluster aggregates data from these monitoring
servers. The management cluster is divided into multiple
levels, including an Observe and Orient level that gath-
ers data and deploys algorithms for system observability.
This advanced monitoring framework supports machine
learning techniques for producing enhanced data analysis,
and alerts. Once alerts and insights are generated, they are
consumed by the Decide level. This level employs intelli-
gent algorithms to find the best decisions in the frame of
processes such as scheduling service components onto the
right node of the right cluster, deciding when and how
to perform service migrations, and performing resource
scaling, among others. Once the corresponding decision is
made, it is forwarded to the Act level, where it is enforced,
leveraging Liqo and Cluster API. In order to isolate services
and ensure connectivity between components of the same
service, the same namespace is deployed across all clusters
that run at least one component of the service. The com-
ponents are deployed inside the service’s namespace, and
the connectivity between the components across clusters is
ensured by Liqo tunnels. For instance, the traffic sent to the
star service by component D will enter the blue VPN tunnel
and be forwarded to component B.

As previously discussed, aside from the aforementioned
functional requirements that only the proposed solution can
guarantee, there are two additional QoS requirements that
are essential for supporting multi-cluster networking for XR
services. Thus, the next section is dedicated to showcasing
that the proposed solution does not produce a significant
overhead in terms of resource consumption and latency.

5 EXPERIMENTAL EVALUATION & DISCUSSION

To showcase the validity of the proposed solution in terms
of facilitating multi-cluster management & networking, two
experiments were conducted. The first study focused on
assessing the speed at which various cluster sizes and
distributions could be automated and provisioned using the
Cluster API. Thus, it examines the effect that the use of
Cluster API has on the overall latency from the perspective
of provisioning times. The second study investigated the
efficiency of Liqo in the context of video streaming, an
important functionality in XR services, in terms of end-to-
end latency and resource consumption.

1. https://prometheus.io/
2. https://thanos.io/



5

Fig. 2. An overview of the proposed solution.

5.1 Automated and Declarative Cluster Orchestration

Automated provisioning through Cluster API is crucial for
minimizing infrastructure and tooling bootstrapping time,
especially in impractical scenarios for larger Kubernetes
clusters. This evaluation centers on automating and assess-
ing the provisioning times for various Kubernetes cluster
sizes and distributions, including lightweight options like
K3s, prevalent in resource-constrained environments. The
objective is to scrutinize Cluster API’s support for diverse
Kubernetes distributions and analyze the provisioning times
for each.

In the frame of this experiment, infrastructure is con-
ceptually divided into management and cloud, thus re-
flecting the two essential components of the proposed so-
lution. The first consists of a Kubernetes cluster hosting
the Cluster API (v1.3.1) components and a set of Clus-
ter API providers, namely two Control Plane providers,
kubeadm (v1.3.1) and k3s (v0.1.5) and one infrastructure
provider, OpenStack (v0.7.0). Such management represents
the key elements for orchestrating the remaining edge cloud.
Kubeadm and k3s portray two widely used control plane
installation options. On the other hand, the second part of
the scenario consists of the cloud infrastructure using an
OpenStack (Microstack Ussuri version) default installation
to host the various Kubernetes clusters and their nodes
where XR services will run.

The evaluation involved measuring the time required
for generating cluster resource definitions (using Cluster
API syntax), applying these resources to the management
cluster, creating corresponding cloud resources (i.e., Virtual

Machines in OpenStack), and configuring the Kubernetes
cluster. Clusterctl, part of Cluster API, was used to generate
cluster definitions, leveraging default templates from each
provider. For K3s on OpenStack, where no template existed,
we created one3 specifically for Kubernetes clusters with k3s
on OpenStack. The evaluation considered 1, 3, 5, 10, 15, 20,
and 25 nodes for each Kubernetes distribution, representing
one control plane, one control plane and two workers, and
one control plane and four workers, respectively. Each node
and Virtual Machine utilized Ubuntu images, with a flavour
featuring 2vCPUs, 2GB RAM, and 20GB disk for both the
control plane and worker nodes.

Fig. 3 displays the experiment results, depicting the total
time for deploying all nodes. Deployment time is defined as
the period until the control plane indicates Ready for single-
node clusters or until all nodes indicate Ready for multi-
node clusters. The tests were conducted 10 times, with error
bars indicating the standard deviation. The results indicate
that there is no significant difference in deployment time be-
tween the two Kubernetes distributions. Total deployment
times ranged from 103 to 316 seconds, encompassing the
creation of corresponding Virtual Machines on the target in-
frastructure. It is crucial to consider various factors influenc-
ing these times, including internal Cluster API reconciliation
logic, cluster provisioning steps, target infrastructure, addi-
tional software installation (e.g., CNI), and checks required
before marking a cluster as Ready. Additionally, scaling the
number of nodes did not proportionally increase the total

3. https://github.com/cluster-api-provider-k3s/cluster-api-k3s/
pull/24



6

deployment time, suggesting simultaneous bootstrapping
of the control plane and remaining nodes by Cluster API.
Thus, it is safe to conclude that the proposed solution is
scalable for large cluster sizes.

Fig. 3. Cluster API deployment time by Kubernetes distribution and
cluster size.

5.2 Dynamic Cross-Cluster Networking
Since video streaming is a relevant aspect of XR services, we
chose to evaluate the integration of Liqo to support cross-
cluster video streaming. This evaluation aims to shed light
on the effect that the use of Liqo has in terms of latency (due
to overhead) and resource consumption. Towards achieving
this goal, Liqo was compared against Kubernetes’ Node-
Port. Although NodePort’s approach of publicly exposing
all services that need to communicate with each other
prevents it from being a viable option for cross-cluster
networking due to security and scalability concerns, it is
capable of serving as a benchmark against Liqo in terms of
end-to-end latency and resource consumption.

In the frame of the examined cross-cluster video stream-
ing use-case, these nodes are used to host three key com-
ponents. A Rendering Service (using ffmpeg4) sends a
source feed using Hypertext Transfer Protocol (HTTP) to
a Streaming Service. The Streaming Service (using ffserver5

as a media server) and a Client (another ffmpeg instance
using Real Time Streaming Protocol (RTSP)) to consume the
video. Based on this use-case, five scenarios were devised:
1) all components are deployed in the same Kubernetes
cluster; 2) two local clusters on top of a singular OpenStack
infrastructure connected via Liqo. In this scenario, one clus-
ter hosts the rendering and client components, while the
other accommodates the streaming service; 3) the same two
local clusters of sce.2, but the services are exposed through
NodePort; 4) two remote clusters, each one running on
top of a different OpenStack infrastructure. One OpenStack
deployment in Frankfurt and a second one in Geneva,
connected through Liqo; 5) the same remote clusters of sce.4,
but the services are exposed through NodePort;

4. https://ffmpeg.org/
5. https://trac.ffmpeg.org/wiki/ffserver

Fig. 4. Latency between streaming and view times for each scenario.

In all scenarios, each Kubernetes cluster was config-
ured with 2 vCPUs, 4GB of RAM, and a 20GB disk. The
setup utilized Ubuntu images for deployment. To assess
Liqo overhead, we measure the overall end-to-end system
latency (from the moment the frame is generated to the
moment it is consumed). For each scenario, we conducted
five independent runs of approximately 30 minutes of video
streaming for a total of 150 min. For measuring latency,
timestamps were embedded into the frames themselves us-
ing ffmpeg filters (generation and consumption timestamps,
respectively), and later the difference was computed via
Optical Character Recognition using Tesseract engine6. For
each scenario, over 10000 frames were analysed. For each
scenario, we also recorded the CPU and RAM consumption
using Prometheus7. Fig. 4 shows the aggregated latency
values of all runs per scenario. Whereas, Fig. 5 investigates
resource consumption in the form of the CPU and Memory
values. For scenarios with two clusters (sce.2 to sce.5), the
resource consumption values represent the average of the
two.

Although sce.1 is not aligned with the underlying
premise of the next generation of XR services that dictates
that these services shall be distributed across domains (and
clusters), its results can provide us with hints about the
overall latency regardless of the multi-domain aspect. Ac-
cording to the results plotted in Fig. 4, the 50th percentile
for sce.1 was equal to 762ms, thus surpassing the other
scenarios. However, in all scenarios the 90th percentile
consistently stayed around the 1-second mark, meaning
that the significant majority of frames had an end-to-end
latency equal to or below this value. Furthermore, sce.1,
despite providing lower average values, presented slightly
more data dispersion (with a standard deviation of 202ms)
characterized by the occurrence of clustering around the 1s
value. These results can be explained by the fact that all
the processing occurred in the same cluster. Even so, it’s
important to note that no bottleneck took place according to
the resource consumption results depicted in Fig. 5. Liqo

6. https://github.com/tesseract-ocr/tesseract
7. https://prometheus.io/



7

(a) CPU consumption.

(b) Memory consumption.

Fig. 5. Resource Consumption for each scenario.

performed slightly better compared to NodePort in the
context of both local and remote clusters. More specifically,
in sce.2 and sce.3, the 50th percentiles were equal to 794ms
and 811ms, while in sce.4 and sce.5 the 50th percentiles
were equal to 801ms and 824ms. The low difference be-
tween local and remote clusters can be attributed to the
relatively small physical distance among cluster locations
(Geneva to Frankfurt). Although these values represent the
overall end-to-end latency as perceived by a client in this
particular scenario, and hence they are also dependent on
the application itself, they demonstrate how Liqo’s overlay
network is capable of supporting distributed XR architec-
tures in terms of end-to-end latency.

Furthermore, the experimental results showcased in
Fig. 5 indicate that the use of Liqo did not result in a
prohibitively increased resource consumption in terms of
CPU and memory. As expected, in sce.1 the CPU usage
was higher with a median of 43.2%. For the remaining
scenarios, Liqo revealed relatively higher CPU consumption
when compared to NodePort. More specifically, in sce.2 and

sce.3, the 50th percentiles were equal to 31.5% and 29.4%,
while in sce.4 and sce.5 the 50th percentiles were equal to
33.5% and 31.0%. These values can be attributed to the
overlay strategy of having dedicated network tunnels be-
tween the clusters. Furthermore, the memory usage results
do not indicate that the use of Liqo was accompanied by
an increase in memory consumption. Instead, the examined
scenarios exhibited an overall relatively similar behaviour
varying approximately between 62% and 70%, regardless
of whether or not they incorporated Liqo.

These findings are important, especially in the frame of
resource-constrained environments. In such environments,
using Liqo for cross-cluster networking introduces moder-
ate CPU overhead due to its overlay network strategy, which
remains manageable. While Liqo uses slightly more CPU
than Kubernetes’ NodePort, its memory consumption is
similar, making it suitable for memory-limited edge deploy-
ments. The key advantage of Liqo is its low latency, which
is crucial for latency-sensitive XR services, thus providing
efficient cross-cluster communication. This makes Liqo a
viable solution for enabling distributed XR architectures in
resource-constrained settings without significantly compro-
mising resource availability. The experimental results that
were explored in the frame of this section demonstrate that
the proposed solution is capable of supporting not only
the functional requirements of XR services, but also the
aforementioned QoS requirements in terms of latency and
resource consumption.

6 CONCLUSION

This work identified the Quality of Service (QoS) and func-
tional requirements of XR services in multi-cluster deploy-
ments. After examining numerous contemporary technolo-
gies, the authors proposed a solution using two contempo-
rary frameworks: Cluster API for multi-cluster orchestration
and Liqo for multi-cluster networking. The solution was
evaluated in two experiments. The first one assessed au-
tomation and provisioning times for different cluster sizes
using Cluster API. The second tested Liqo’s efficiency in
cross-cluster video streaming, a key use-case for XR services.
The results showed that the solution effectively meets the
aforementioned QoS and functional requirements of XR
applications in multi-cluster environments.

In order to fully harvest the benefits of the proposed so-
lution, it is vital to facilitate the operational complexity that
arises from the need to orchestrate and monitor multiple
clusters seamlessly in an automated manner that is aligned
with the architecture that is depicted in Fig. 2. Thus, future
research directions that spawn from the proposed solution
involve the facilitation of the operational complexity that
is associated with multi-cluster connectivity, and manage-
ment. In the frame of establishing automated orchestration,
it is essential to develop novel intelligent algorithms for han-
dling dynamic workload distribution, service component
placement, service migration, resource scaling, and many
more. In the frame of developing comprehensive monitoring
tools, it is of paramount importance to integrate machine
learning techniques into monitoring frameworks to enable
predictive analytics & anomaly detection, and to develop
tools that support monitoring across federated Kubernetes



8

clusters and hybrid cloud environments, addressing chal-
lenges related to interoperability between on-premises and
cloud-based Kubernetes deployments. Tackling these oper-
ational challenges is essential to effectively realizing the full
potential of multi-cluster deployments for XR services.

ACKNOWLEDGEMENTS

The research leading to these results received funding from
the European Union’s Horizon 2020 research and inno-
vation programme under grant agreement No 101016509
(project CHARITY). It is also supported in part by the
European Union’s HE research and innovation program
HORIZON-JUSNS-2023 under the 6G-Path project (Grant
No. 101139172). The paper reflects only the authors’ views.
The Commission is not responsible for any use that may be
made of the information it contains. The work of JaeSeung
Song was supported by the Ministry of Science and ICT
(MSIT) under the Information Technology Research Center
(ITRC) support program and the Technology Innovation
Program funded By the Ministry of Trade, Industry &
Energy(MOTIE, Korea) under Grant IITP-2024-2021-0-01816
and RS-2022-00154678. Prof. Song and Prof. Taleb are co-
corresponding authors of this work.

REFERENCES

[1] B. Burns, J. Beda, K. Hightower, and L. Evenson, Kubernetes: up and
running. ” O’Reilly Media, Inc.”, 2022.

[2] K. Boos, D. Chu, and E. Cuervo, “Demo: Flashback: Immersive
virtual reality on mobile devices via rendering memoization,”
in Proceedings of the 14th Annual International Conference
on Mobile Systems, Applications, and Services Companion, ser.
MobiSys ’16 Companion. New York, NY, USA: Association
for Computing Machinery, 2016, p. 94. [Online]. Available:
https://doi.org/10.1145/2938559.2938583

[3] T. Taleb, A. Boudi, L. Rosa, L. Cordeiro, T. Theodoropoulos,
K. Tserpes, P. Dazzi, A. Protopsaltis, and R. Li, “Towards support-
ing xr services: Architecture and enablers,” IEEE Internet of Things
Journal, 2022.

[4] J.-M. Chung, “Xr and multimedia video technologies,” in Emerging
Metaverse XR and Video Multimedia Technologies: Modern Streaming
and Multimedia Systems and Applications. Springer, 2022, pp. 183–
228.

[5] ”Kubefed”, https://github.com/kubernetes-sigs/kubefed.
[6] ”Karmada”, https://karmada.io/.
[7] ”TerraForm”, https://terraform.io/.
[8] ”ClusterApi”, https://cluster-api.sigs.k8s.io/.
[9] ”Istio”, https://istio.io/.
[10] ”Linkerd”, https://linkerd.io/.
[11] ”Consul”, https://consul.io/.
[12] ”Network Service Mesh”, https://networkservicemesh.io/.
[13] ”Submariner”, https://submariner.io/.
[14] ”Skupper”, https://skupper.io/.
[15] M. Iorio, F. Risso, A. Palesandro, L. Camiciotti, and A. Manzalini,

“Computing without borders: The way towards liquid comput-
ing,” IEEE Transactions on Cloud Computing, vol. 11, no. 3, pp. 2820–
2838, 2023.

Theodoros Theodoropoulos received the Eng. Diploma degree from
the School of Electrical and Computer Engineering, National Technical
University of Athens, Athens, Greece. He is currently pursuing the Ph.D.
degree with the Department of Informatics and Telematics, Harokopio
University of Athens, Kallithea, Greece. He has been working as a
Research Engineer with the Harokopio University of Athens for the last
three years. During this time, he had the chance to work at several
Research and Development projects and to author numerous scientific

publications. His main research interests include deep learning, graph
neural networks, deep reinforcement learning, and cloud & edge com-
puting.

Luis Rosa received the Ph.D. degree in information science and tech-
nology from the University of Coimbra, Coimbra, Portugal, in 2021.
He has been involved as a researcher in various European research
projects. He has more than ten publications in journals, conferences,
and book chapters on those topics. His research interests include
edge/cloud computing, networks, security, and critical infrastructure pro-
tection.

Abderrahmane Boudi received the M.Sc. and Ph.D. degrees from the
Higher National School of Computer Science (ESI), Algiers, Algeria,
in 2013 and 2020 respectively. He was a visiting student of MOSA!C
Lab/AALTO in 2017 and he has worked there as a research assistant
in 2020. Currently, he is a senior lecturer at ESI and a researcher
at ICTFICIAL Oy working on several projects on XR, AI, and Digital
Twinning. His research interests include computing in the Edge/Cloud
continuum, intelligent feedback control systems, SDN, and 6G and
beyond networks.

Tarik Zakaria Benmerar received his engineer degree in computer en-
gineering from USTHB-Algiers, in 2010 and master’s degree in networks
and distributed systems from USTHB-Algiers, in 2011. He received his
PhD degree in parallelism and cloud computing (SaaS) applied for
cerebral connectivity using diffusion MRI, at USTHB-Algiers in 2019.
He is currently a senior lecturer at USTHB, and a research engineer
at ICTIFICIAL, Oy. His current research interests include cloud comput-
ing/edge/IoT architecture and orchestration, WebRTC-based streaming
architectures and web browser-based parallelism.

Antonios Makris is a Senior Researcher at the School of Electrical and
Computer Engineering at the National Technical University of Athens
(NTUA). He received his BSc Degree in Computer Science in 2013
and MSc Degree in Web Engineering in 2015, both from Harokopio
University of Athens. In 2022, he received his PhD in the area of
Distributed Systems from the same department. His main research
interests include Distributed Computing, Edge and Cloud Computing,
Big Data Management and Analysis, Machine/Deep learning, NoSQL
Database Systems and Spatiotemporal and Trajectory Analysis. He has
participated in numerous European Union (EU) and National funded
projects.

Tarik Taleb is currently a Full Professor at Ruhr University Bochum, Ger-
many. He was a Professor with the Center of Wireless Communications
(CWC), University of Oulu, Oulu, Finland. He is the founder of ICTFI-
CIAL Oy, and the founder and the Director of the MOSA!C Lab, Espoo,
Finland. From October 2014 to December 2021, he was an Associate
Professor with the School of Electrical Engineering, Aalto University, Es-
poo, Finland. Prior to that, he was working as a Senior Researcher and
a 3GPP Standards Expert with NEC Europe Ltd., Heidelberg, Germany.
Before joining NEC and till March 2009, he worked as an Assistant
Professor with the Graduate School of Information Sciences, Tohoku
University, in a lab fully funded by KDDI. From 2005 to 2006, he was a
Research Fellow with the Intelligent Cosmos Research Institute, Sendai.
He received the B.E. degree (with distinction) in information engineering
and the M.Sc. and Ph.D. degrees in information sciences from Tohoku
University, Sendai, Japan, in 2001, 2003, and 2005, respectively.



9

Luis Cordeiro received the M.Sc. degree in communications and telem-
atics from the University of Coimbra, Coimbra, Portugal, in 2007. He is
a CTO with OneSource, Lisbon, Portugal. He has been actively involved
in more than ten European research projects since 2004, mostly in
the fields of networking, cloud, and security. He has several publica-
tions in journals, book chapters, and conferences. He has an extensive
background in the areas of data communications, security, infrastructure
management, and virtualization.

Konstantinos Tserpes is an Assistant Professor at the School of Elec-
trical and Computer Engineering at the National Technical University of
Athens (NTUA). He earned his PhD in Distributed Systems from the
same institution. His research interests are primarily centered around
efficient computing and data analytics systems, with a particular em-
phasis on the resource usage prediction on various applications. This
work falls within the broader domain of systems engineering, where he
has contributed significantly. He has also been an active participant in
numerous European Union (EU) and National funded projects, where
he has held various key roles, including that of scientific or general
coordinator.

Jaesung Song is a full professor in both the Department of Computer &
Information Security and the Department of Convergence Engineering
for Intelligent Drones at Sejong University, Seoul, South Korea. He holds
the position of Technical Plenary Vice Chair of the oneM2M global IoT
standards initiative. Prior to his current position, he worked for NEC
Europe Ltd. and LG Electronics in various positions. He received a Ph.D.
at Imperial College London in the Department of Computing, United
Kingdom. He holds B.S. and M.S. degrees in computer science from
Sogang University. His research interests span the areas of beyond 5G
and 6G, AI/ML enabled network systems, software engineering, net-
worked systems and security, with focus on the design and engineering
of reliable and intelligent IoT/M2M platforms.


