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Abstract—For the computation offloading via device-to-device
(D2D) terminals and edge servers in a resource-constrained
wireless network (RCWN), mobile users can choose to offload
their tasks to nearby D2D terminals or edge servers according
to quality of service (QoS) requirements (e.g., load balancing
at the network edge) by mobile edge computing. To this end,
we first formulate computation offloading as a multi-user col-
laborative resource dynamic management optimization problem
that aims to maximize user satisfaction utility function, carefully
considering critical issues like the non-uniform distribution of
computational resources, user’s risk awareness, and the dynamic
changes between computing-intensive regions and computing-
sparse regions. This is a nonlinear and nonconvex optimization
problem, which is generally difficult to be solved. We then
construct a resource management scheme for resource allocation
of the edge server based on convex optimization. Furthermore,
we propose a dynamic offloading update strategy achieving the
maximum of user satisfaction utility function based on game
theory. The simulation results are presented to show that our
proposed method can increase the total system satisfaction utility
by nearly 20% and reduce the system energy consumption by
nearly 10% compared to the benchmark methods.

Index Terms—Computation offloading, mobile edge comput-
ing, edge server, resource allocation, game theory.

I. INTRODUCTION

This work was supported in part by the Ministry of Education Innovation
Group Joint Fund under Grant 8091B042222; in part by the Major Program
of the National Natural Science Foundation of China under Grant 62394321;
in part by the National Natural Science Foundation of China under Grant
62372076; in part by the Education Department Research Foundation of
Anhui Province under Grant DTR2023051; in part by the Innovation Research
Team on Future Network Technology of Chuzhou University; in part by
the Innovation Team for Smart Home Appliance Security and Applications
of Chuzhou City; in part by ICTFICIAL Oy, Finland; and in part by the
European Union’s HE Research and Innovation Program HORIZON-JUSNS-
2023 through the 6G-Path Project under Grant 101139172. (Corresponding
authors: Wei Su; Bin Yang.)

Yuan Yuan is with the Zhongguancun Laboratory, Beijing 100081, China,
and also with the School of Electronic and Information Engineering, Beijing
Jiaotong University, Beijing 100044, China (e-mail: yuan.yuan@bjtu.edu.cn).

Bin Yang is with the School of Computer and Information Engineer-
ing, Chuzhou University, Chuzhou 239000, Anhui, China (e-mail: yang-
binchi@gmail.com).

Wei Su and Hongke Zhang are with the School of Electronic and Informa-
tion Engineering, Beijing Jiaotong University, Beijing 100044, China (e-mail:
wsu@bjtu.edu.cn, hkzhang@bjtu.edu.cn).

Qi Liu is with the Technology Innovation Center, Smart City Re-
search Institute of China Unicom, Beijing 100048, China (e-mail: li-
uqi49@chinaunicom.cn).

Tarik Taleb is with the Faculty of Electrical Engineering and Information
Technology, Ruhr University Bochum, 44801 Bochum, Germany (e-mail:
tarik.taleb@rub.de).

IN THE past decade, the number of mobile devices has
experienced an exponential increase, which poses signif-

icant challenges to various computing-intensive and time-
sensitive applications in wireless networks, such as video con-
ferencing, autonomous driving, and virtual-reality gaming [1],
[2]. Such networks often exhibit resource-constrained features
of wireless medium and energy storage [3]–[5]. Currently,
the integration of cloud computing and edge computing has
been widely adopted, and leveraging nearby edge servers to
enhance network computing capabilities is regarded as an
efficient and reliable approach. However, it cannot provide
the services of real-time transmission and computation for
huge amounts of mobile data traffic [6]. This is due to the
fact that each edge server in resource-constrained wireless
networks (RCWNs) has limited computational resources and
its computational capacity is shared by all users nearby in the
networks. If a large number of computation offloading tasks
are performed on the edge server, the edge server becomes
overloaded and may cause server failures. To mitigate this
negative impact, we introduce a promising device-to-device
(D2D)-based offloading [7]. Notably, idle users (e.g., parked
vehicles) present in the Internet of Vehicles (IoV) scenario can
act as D2D terminals to assist the edge servers in computation
offloading tasks and reduce the computational pressure on
the edge servers [8], [9]. Thus, for efficient support of the
above applications in RCWNs, it is critical to offload users’
computational tasks to nearby edge servers and idle terminals
via cellular links and D2D links, respectively [10]–[12].

The computation offloading has been extensively studied in
RCWNs (see Related Work in Section II for details). Existing
research on computation offloading focuses on edge servers
[13]–[15], D2D terminals [16]–[18], and joint edge servers
and D2D terminals [9], [19]–[21]. For the edge server-based
offloading, these works usually consider resource-sharing edge
network scenarios with multi-users. To determine optimal
offloading strategy, the optimization models are developed
with the constraints of user mobility, channel variations, and
computational resource allocation in such scenarios. Various
methods (e.g., game theory, reinforcement learning) are pro-
posed to solve these optimization problems. As for the D2D-
based offloading, these works fully utilize multi-user devices
to offload computational tasks, which can reduce the load
on edge servers to support computing-intensive applications.
Specifically, any device via D2D communication can directly
offload tasks to nearby device without forwarding through base
stations. D2D communication is a promising technology to
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significantly improve network performances, such as compu-
tational capacity, transmission latency and network coverage,
which has been identified as an important component of 5G
and beyond [22], [23].

It is noticed that the above work mainly focuses on resource
allocation approaches in static regional scenarios. Under such
approaches, each user can be allocated a comparable amount
of computational resources. However, in computing-intensive
and computing-sparse areas, users’ demands for computational
resources often differ. The computing-intensive regions re-
quire more computational resources, while the computing-
sparse regions have relatively low computational requirements.
Particularly, these two types of computing regions change
dynamically based on user demand. For instance, a computing-
sparse region may become computing-intensive as demand
increases, and vice versa. As a result, two fundamental issues
arise. One is how to allocate computational resources to meet
the users’ demands in the dynamically changed computing
regions. Another is how to enhance offloading capacity and
user satisfaction once if edge server cannot satisfy the demand
of offloading in the computing-intensive region.

To address these issues, this paper explores a joint offloading
approach via D2D and edge servers, which can adaptively allo-
cate computational resources to meet the users’ demands in the
dynamically changed computing regions. However, the joint
approach poses two challenging problems. One problem is
how to model dynamically changed computational resources in
the computing regions according to users’ demands. Another
one is how to construct the utility function of user satisfaction,
and how to solve the complex optimization problem on the
utility function maximization. To this end, we first employ user
demand and server failure probability to model the dynamic
computing regions. Then, we further use prospect-theoretic
user satisfaction to construct the utility function and further
propose a game-theoretic approach to solve the challenging
optimization problem. The main contributions of this paper
can be summarized as follows.

1) We first formulate the computation offloading as a multi-
user collaborative resource dynamic management opti-
mization problem that aims to maximize user satisfaction
utility function, carefully considering critical issues like
the non-uniform distribution of computational resources,
the user’s risk awareness, and the dynamic changes
between computing-intensive regions and computing-
sparse regions.

2) We construct a resource management scheme for re-
source allocation of the edge server based on convex
optimization. We further propose a dynamic offloading
update strategy achieving the maximum of user satisfac-
tion utility function based on game theory and prospect
theory, which satisfies the requirements of users’ tasks
and load balancing at the network edge.

3) Finally, extensive simulation results are presented to
validate the effectiveness of our proposed algorithm and
to illustrate the impact of system parameter on system
utility. We also conduct the comparison study between
our proposed algorithm and some benchmark methods.

The remainder of this paper is organized as follows. Sec-
tion II summarizes the related work. Section III introduces
the system model of the RCWN. Section IV constructs the
overhead function and the prospect-theoretic utility function,
thus formulating the optimization problem of the satisfaction
utility. Section V proposes the GTCOS algorithm to solve the
optimization problem. Section VI provides extensive simula-
tion results. Finally, Section VII concludes this paper.

II. RELATED WORK

In RCWNs, mobile edge computing (MEC) is an efficient
resource management technology to provide the computation
offloading service. The existing computation offloading in
MEC mainly depends on edge servers and D2D terminals,
which can support computing-intensive and time-sensitive
applications [9], [13]–[21].

For the edge server-based offloading, these works usually
consider resource-sharing edge network scenarios with multi-
users. Based on Q-Learning and convex optimization algo-
rithms, the authors in [13] propose a hybrid optimization
approach to achieve better network performance and lower
computing cost by optimizing computation offloading and
resource allocation in the edge network. The approach ver-
ifies the feasibility of MEC distributed offloading and solves
the optimization problem through decoupling. The work of
[14] aims to minimize the maximum task completion latency
among all devices by a joint optimization of service caching,
task offloading, communication and computation resource
allocation, and vehicle placement, while satisfying the en-
ergy consumption constraints of all devices. This approach
explores the joint optimization problem of resource control in
resource-constrained (especially for mobile terminals’ energy
constraints) edge networks. In [15], the authors investigate the
machine learning-based resource allocation mechanism, which
can intelligently balance and share computational resources
for MEC servers to meet the quality of service (QoS) of
applications. At the same time, it indicates that MEC systems
need to meet execution latency while minimizing the energy
consumption of Internet of Things (IoT) devices.

As for the D2D-based computation offloading, these works
fully utilize D2D terminals to offload computational tasks,
which can reduce the load of edge servers to support
computing-intensive applications. The work of [16] minimizes
the overall computation with the constraints of individual
energy and computational capacity at both a local user and
multiple helpers in a D2D-enabled MEC system. This ap-
proach validates the feasibility of D2D computation offloading,
where local users can offload their tasks to multiple helpers via
D2D communication. In [17], a mobile device and its nearby
devices form a mobile ad-hoc edge cloud allowing the agent
to offload its tasks to nearby devices, thereby reducing the
computational load of the mobile device. The work of [18]
is based on the framework of D2D fog computing to realize
the sharing of communication resources and computational
resources between mobile devices. The approach takes into
account the unpredictability of D2D devices while ensuring
optimal energy conservation between systems.
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Recently, some work has been devoted to investigating
joint D2D and edge server-enabled computation offloading
schemes. The work of [9] focuses on the partial computa-
tion offloading problem in parked vehicle-based mobile edge
computing (PVMEC) systems, which extends the computa-
tional capacity of MEC servers by utilizing the resources
of parked vehicles (PVs), and formulates it as the system
utility maximization problem with a careful consideration of
offloading decisions, offloading ratios, and resource allocation.
The work of [19] conducts the study of task co-offloading
problem that offloads computing-intensive industrial tasks to
either MEC servers via cellular links or nearby industrial
devices via D2D links. A co-offloading framework is further
proposed to integrate migration cost and offloading willingness
in D2D-assisted MEC networks. The authors in [20] propose
a learning-based energy-efficient task offloading method for
delay-sensitive and computing-intensive tasks in Vehicular
Collaborative Edge Computing (VCEC). The approach ex-
plores the joint offloading problem in resource-constrained
edge networks and decomposes the optimization problem
into resource allocation and task offloading selection. The
authors in [21] propose a multi-agent deep reinforcement
learning (MADRL)-based approach to solve the task offload-
ing problem in air-ground cooperative vehicular computational
networks (AVC2N) by introducing unmanned aerial vehicles
(UAVs) and cooperative vehicles (CVs), while satisfying the
ultra-reliable and low-latency communication (URLLC) re-
quirements. The approach divides the computation offloading
problem into transmission cost optimization and computational
resource allocation problems.

We note that the above studies explore individual or joint
computation offloading issues, providing a useful perspective
for our research. On the one hand, D2D devices can be
an effective complement to edge server-based computation
offloading, but the unpredictability and optimal energy con-
servation of D2D devices need to be concerned. On the other
hand, efficient computation offloading schemes can be solved
one by one by decoupling into sub-problems. Combined with
the concept of Distributed Foundational Models, lightweight
multi-modal learning models can be deployed in multiple
edge servers, and federated learning technology can be used
to realize collaborative model updating, thus improving of-
floading decision-making and state sensing. This improves the
intelligence of offloading decision-making and state-sensing
[24], [25].

In our previous work [26], we explored the joint design of
D2D and edge server for computation offloading. However,
this work only considers a simple case that the computational
resources are uniformly distributed regardless of the dynamic
change of computing-intensive and computing-sparse regions.
Motivated by this observation, this paper proposes a dy-
namic allocation strategy for computational resources, which
can flexibly deploy resources for computing-intensive and
computing-sparse regions in RCWNs. To improve the com-
putational capacity in computing-intensive region, this paper
conducts a joint design for the D2D and edge server-enabled
computation offloading, under which the computational tasks
of mobile devices can be offloaded to their nearby devices.

III. SYSTEM MODEL

A. Network Model

As shown in Fig. 1, we consider an uplink transmission
cellular network consisting of one base station (BS), one edge
server, N mobile users, and M idle users. In such a cellu-
lar network, the computational requirements are dynamically
changing, which corresponds to the computing-sparse and
computing-intensive cases. For the former, each mobile user
can offload its computational tasks to the edge server deployed
on the BS via a cellular link. In the latter case, we consider
a joint computation offloading of D2D and edge server, with
which each mobile user can offload its computational tasks to
the edge server and the idle users via D2D communications.
We consider that the edge server can serve multiple mobile
users and each idle user can similarly serve multiple mobile
users. Users are free to choose either edge server or D2D ter-
minals for computation offloading services. It is worth noting
that due to the higher risk of edge server failure in computing-
intensive regions, users prioritize other computation offloading
methods (i.e., D2D-based offloading) in order to mitigate this
risk and ensure higher satisfaction utility.

We consider a multi-channel interference-limited wireless
communication environment in which all users share the
system’s bandwidth as the wireless communication channel.
Besides, all wireless channels encounter additive white Gaus-
sian noise with variance σ2.

Note that the “dynamics” refers to the continuous changes in
the state of computing regions, while “variation” specifically
denotes the switching process between computing-intensive
and computing-sparse regions. The red and blue circular
arrows illustrated in Fig. 1 represent this dynamic evolution
mechanism of computing regions, and the variation process
unfolds as follows.

User behavior triggers changes in the computing re-
gion, resulting in transitions between computing-intensive and
computing-sparse states. Conversely, changes in the comput-
ing region also influence user behavior, thereby forming a
feedback loop. Specifically, uncertainty in resource availability
(e.g., dynamic fluctuations in the failure probability of edge
servers) induces user’s risk awareness in their offloading
decisions [27], [28]. When users reduce the volume of data
offloaded, the load on edge servers decreases, leading to
a corresponding drop in their failure probability. As users
perceive the edge servers to be operating more reliably, they
tend to increase the amount of data offloaded in pursuit of
higher satisfaction utility. However, this increased offloading
pressure gradually raises the failure probability of edge servers
once again.

In the RCWN, we utilize computation offloading services to
satisfy the demand for time-sensitive and computing-intensive
tasks in the computing region. In this network, each edge
server is considered as a core network entity with powerful
computational capacity to provide services to users. However,
its computational capacity is limited and still cannot satisfy
the demand of a large number of users in computing-intensive
regions. Therefore, it is crucial to provide computation of-
floading services to idle D2D terminals in computing-intensive
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Fig. 1. System scenario

regions. Therefore, users, edge servers, and D2D terminals
are jointly involved in the computation offloading process. In
addition, we propose a dynamic resource allocation and task
offloading strategy to guarantee a higher satisfaction utility of
the system. The process is as follows.

When there is a demand for computation offloading ser-
vices, users need to add small metadata to describe the tasks
and update their computational resource usage status. The
edge server and all vehicles need to share the required data
information and obtain the optimal resource allocation ratio
by the Lagrange multiplier method. Then, the edge server
provides the corresponding computational resources to the
users according to the optimal resource allocation ratio. All
users adjust their offloading strategies (i.e., the amount of data
offloaded and the way of offloading) by constructing a non-
cooperative game. Each user follows the best-response dynam-
ics and loops the above steps (i.e., dynamic resource allocation
and task offloading) to select the best response strategy in
turn until the system converges to a Nash equilibrium. Based
on the resource allocation and task offloading decisions in
the Nash equilibrium state, data transmission is completed,
and the results are returned to the user devices after being
processed by the edge server and the D2D terminal. Note
that the RCWN senses the changes in computing-intensive or
computing-sparse regions by the server failure probability, and
then selects at least one operation from local execution, D2D-
based offloading, and server-based offloading.

Deploying the computation offloading solution on the
ground is a very challenging endeavor. Computation offloading
first requires the deployment of infrastructure with a high-
performance edge server on the base station side, and com-
putational resource allocation and management policies are
deployed on this server. Then, the base station is responsible
for establishing communication links with subscribers and
D2D terminals, and at the same time monitoring the load
status of the edge server to accomplish the allocation of

computational resources and wireless resources.

B. Task Model

We use N = {1, 2, 3, ..., N} to denote the set of N mobile
users and use M = {1, 2, 3, ...,M} to denote the set of M
idle users available to provide computation offloading services
in the computing-intensive region. Note that mobile users and
idle users (e.g., parked vehicles) are two different types of
vehicles. Among them, idle users are vehicles parked on the
roadside or in parking areas based on PVMEC [8], [9]. Mobile
users are vehicles that initiate computational requests to fulfill
intelligent driving requirements. For the edge server, its avail-
able computational capacity is represented as F , and it cannot
offload all computational tasks due to limited computational
resources. For the edge server (j = 0) and any idle terminals
(j ̸= 0), we use dij to indicate the amount of data offloaded to
terminal j, and use di to indicate the amount of offloaded data.
The offloading ratio of each task on the terminal (i.e., edge
server and D2D terminals) is denoted as αi = di/Di, where
Di is the task packet size. Note that αi = 1 represents the
complete offloading case and αi ∈ [0, 1) represents the partial
offloading case. All user tasks are assumed to have identical
processing density (in CPU cycles/bit), which is denoted as
ρi. Thus, the computational task workload is expressed as

Ci = Diρi. (1)

C. Load-shifting Model

We use the user’s changing demand function Rtot to
represent the transformation relationship between sparse and
intensive computing regions. The computing-intensive and
computing-sparse regions correspond to higher and lower user
demands, respectively. Based on the user demand function,
we introduce the return function Rre and the edge server
failure probability P f

i to represent the load-shifting model in
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computing-intensive or computing-sparse regions. In particu-
lar, the return function illustrates the positive experience of
the edge server in providing computational resources, and the
edge server failure probability illustrates the likelihood of an
edge server being affected by a computing-intensive region
and triggering a failure.

The demand function Rtot is defined as a continuous and
increasing function of the total offloaded data processed by
all users [29]. Without loss of generality, any function that
follows the above properties can represent the user demand,
and an example is used to represent user requirements as

Rtot = 1/(1 + e−µ
∑

i∈N ρidi0), (2)

where µ is the correction factor for the demand function, and
di0 indicates the amount of offloaded data via edge server-
based offloading, which reflects the effect of a computing-
intensive region or a computing-sparse region on the system
utility.

We define the return function Rre to be constantly posi-
tive, reflecting the positive experience of the edge server in
providing computational resources. The return function is a
continuous monotonically decreasing concave function [30].
This is due to the fact that the positive experience of return de-
creases as the total user computational demand increases (i.e.,
the phenomenon of diminishing marginal returns). Without
loss of generality, any function exhibiting the aforementioned
properties can represent the positive experience of return, and
we choose an example to represent the return function as

Rre(Rtot) = e1−Rtot + 1. (3)

We define the failure probability P f
i of an edge server as

a function of the value of the user demand. Meanwhile, the
failure probability of an edge server should be presented as
a convex function in computing-sparse regions with low user
demand and a concave function in computing-intensive regions
with high user demand [29]. Without loss of generality, we
choose a representative example that satisfies convergence to
represent failure probability function as

P f
i = R2

tot. (4)

The effective probability of the system can be obtained as
1−P f

i , which tends to zero in extremely computing-intensive
regions. The model presented in this paper can effectively
capture the fundamental trend that servers are more likely
to fail as the load increases. At the same time, it simpli-
fies the calculation of mathematical variables (i.e., overhead
function, prospect-theoretic utility function and satisfaction
utility function) related to server failure probability, ensuring
mathematical tractability. This facilitates the resolution of
the subsequent optimization problem using game-theoretic
approaches.

Note that we illustrate the reasonableness of the model’s
assumptions about network conditions and user behavior as
follows. For user behavior, users tend to choose the compu-
tation offloading approach that can obtain higher satisfaction.
It should be noted that the demand function of the users is
directly related to the amount of offloaded data. The demand

function is defined as a continuous and increasing function
of the total offloaded data processed by all users [29]. For
network conditions, the change of edge server failure prob-
ability corresponds to the shift between computing-intensive
and computing-sparse regions.

Without loss of generality, we reconcile the single offloading
method and the hybrid offloading method by adjusting the
server failure probability. To verify the generality of the
model, we can flexibly adjust the parameters to reflect the
changes in computing regions. the satisfaction utility function
validates the user’s ability to offload computational tasks in
the continuously changing computing region of the RCWN.
The return of the system is the positive feedback from the
edge servers in providing computational resources to the users,
which is closely related to the users’ demands and validates
the subjectivity of the users, thus avoiding the yield risk in
computation offloading. In the optimization problem construc-
tion process, we obtain the optimal strategy by maximizing
the satisfaction utility. Among them, the satisfaction utility
consists of the prospect-theoretic utility provided by edge
server-based offloading, local computational consumption, and
D2D-based offloading consumption.

D. Performance Model

We define the time and energy consumption required to pro-
cess computational tasks, which are related to the satisfaction
utility function introduced in the next section. The time con-
sumption model should consider local execution and offload-
ing scenarios. Here, the time consumption required for local
execution depends on the offloading ratio, the task workload,
and the local computational capacity. The time consumption
required for offloading depends on link transmission state,
task workload, and terminal’s computational capacity. The
energy consumption model should incorporate local execution
energy, data transmission energy, and D2D terminal execution
energy. Here, the energy consumption is associated with the
computation power parameter, the computational capacity, the
task workload, the link transmission state, and the offloading
ratio.

We consider that the edge network employs a partial of-
floading approach to computational tasks. Therefore, the local
task execution latency tloci is given as

tloci = (1− αi)Ci/f
loc
i , (5)

where Ci is the workload of the task, αi is the offloading ratio,
and f loc

i is the local computational capacity.
The time consumption on task offloading consists of trans-

mission latency and processing latency, which is expressed as

toffij = tupij + texeij , (6)

where tupij represents transmission latency, and texeij represents
processing latency.

Transmission latency tupij of the cellular link or D2D link is
given by

tupij = dij/Rij , (7)

where Rij represents the transmission rate.
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We consider the cellular and D2D links share the same
frequency bands, and thus there exists mutual interference
among them. The Rayleigh channel model in small-scale
fading is considered in RCWN, i.e., the received signal is
assumed to be the sum of a large number of independent and
identically distributed multi-path components, which can be
approximated as obeying independent Gaussian distributions.
Although the impact of time-varying channels on link quality
is not explicitly considered in this work, the Rayleigh fading
model under fast-fading environments has been extensively
used in existing studies to capture such effects [31], [32]. In
fact, this paper does account for the intermittent connectivity
of communication links. Specifically, we assume that vehicles
can access D2D terminals within a certain range. If a vehicle
falls outside this range, its computational tasks can only
be offloaded to the edge server or executed locally. For a
transmitter (e.g., user i) and its receiver (e.g., terminal j), the
transmission rate Rij from user i to terminal j is determined
as

Rij = B log2

(
1 +

pih
2
ij

σ2 +
∑

k∈N ,k ̸=i pkhkj

)
, (8)

where B is the channel bandwidth of the base station, pi is the
signal transmit power of user i for offloading the task to the
edge server or idle D2D terminals, hij denotes the Rayleigh
channel coefficient with Gaussian distribution, and σ2 is the
noise power. Here, when j = 0, Rij is the transmission rate
of the cellular link, and otherwise, it is the transmission rate
of D2D link.

The processing latency texeij at the terminal (e.g., edge server
or idle D2D terminals) is determined as

texeij = dijρi/Fij , (9)

where Fij is the computational resource provided by terminal
j to user i. The subscript j = 0 denotes the computational
capacity allocated by edge server, which can be expressed as

Fi0 = βiF, (10)

where F represents the computational capacity of the edge
server, and βi represents the ratio of the edge server’s com-
putational resources allocated to user i.

Therefore, the offloading latency of the computational task
is given by

toffij = tupij + texeij =
dij
Rij

+
dijρi
Fij

. (11)

The energy consumption in RCWN comprises three main
components:

1) Local computation energy Eloc
i : The energy consumed

by mobile user i to process tasks locally.
2) Transmission energy Etra

ij : The energy consumed for data
transmission from user i to terminal j.

3) D2D computation energy Ecom
ij : The energy consumed

by D2D terminal j to execute tasks offloaded from user i.
Note that the edge server is directly connected to the power

supply, and thus the energy consumption of the edge server is
not considered. The feedback of the results is so small that its

transmission time can be ignored. Therefore, the user energy
consumption Ei is expressed as

Ei = Eloc
i +

M∑
j=0

Etra
ij +

M∑
j=1

Ecom
ij . (12)

Three types of energy consumption are denoted by formulas
as follows (13)-(15) [33]. Here, the value of Eloc

i is the
multiplication of the computation power parameter, the cube of
the local computational capacity, and the local task execution
latency. Therefore, Eloc

i is given by

Eloc
i = ϵ

(
f loc
i

)3
tloci , (13)

where ϵ is the computation power parameter, f loc
i is the local

computational capacity, and tloci is the local task execution
latency.

The value of Etra
ij is the multiplication of the user’s signal

transmit power and the transmission latency between user i
and terminal j. Therefore, Etra

ij is given by

Etra
ij = pit

up
ij = pidij/Rij , (14)

where pi is the user’s signal transmit power and tupij is the
transmission latency between user i and terminal j.

The value of Ecom
ij is the multiplication of the computation

power parameter, the cube of the local computational capacity,
and the processing latency of the terminal (e.g., edge server
or idle D2D terminals). Therefore, Ecom

ij is given by

Ecom
ij = ϵ (Fij)

3
texeij , (15)

where ϵ is the computation power parameter, Fij is the local
computational capacity, and texeij is the processing latency of
the terminal (e.g., edge server or idle D2D terminals).

Note that D2D terminals are limited in power supply.
Computation offloading may exhaust the energy of the D2D
terminals, resulting in the vehicle being unable to perform
its duties, such as starting the vehicle engine [9]. Therefore,
a constraint is introduced to ensure that the residual battery
energy of the D2D terminal (i.e., Eres

j ) after D2D-based
offloading is not less than a specified threshold value Emax,
which is given by

Eres
j = Ecur

j − Ecom
ij ≥ Emax, ∀i ∈ N , j ∈ M, (16)

where Eres
j is the residual battery energy of the D2D terminal,

Ecur
j is the current energy level of D2D terminal j, and Ecom

ij

is the energy consumption of D2D terminal j.
The symbols used in this paper are described in Table I.

IV. PROBLEM FORMULATION

A. Overhead Function

For any user i, we give three types of overhead functions
according to the execution location of its computational tasks
[30], [31], [34].

1) Case 1 for local overhead: Local overhead consists of
the time consumption and energy consumption induced
by local computing of the unoffloaded data. Then, the
local overhead function K loc

i can be expressed as

K loc
i = tloci + Eloc

i . (17)



7

TABLE I
DEFINITION OF MATHEMATICAL SYMBOLS

Symbol Definition
N The number of mobile users.
M The number of idle users.
N The set of mobile users.
M The set of idle users.
S The distribution of offloading strategies.

d−i The set of offloading strategies (except for user i).
di The offloaded data of user i.
dij The offloaded data from user i to D2D terminal j.
Di Task packet size.
ρi Processing density.
Ci The Workload of the task.
αi The offloading ratio of each task on the terminal.
βi The ratio of the edge server’s computational re-

sources allocated to user i.
Rre Return function.
Rtot Demand function.
P f
i The failure probability of the edge server.

tloci Local task execution latency.
f loc
i Local computational capacity.
Ri0 Transmission rate of cellular link.
Rij Transmission rate of D2D link.
hij Channel gain.
σ2 Variance of noise power.
tupij Transmission latency between user i and terminal j.
texeij Processing latency of the terminal (e.g., edge server

or idle D2D terminals).
toffij Offloading latency of the computational task.
F Computational capacity of the edge server.
Fij Computational capacity provided by terminal j to

user i.
Ei Energy consumption of user i.
Eloc

i Local computation energy.
Etra

ij Transmission energy.
Ecom

ij D2D computation energy.
pi Signal transmit power of user i.

Kloc
i Overhead function for computing locally.

Kdev
i Overhead function for D2D-based offloading.

Kedg
i Overhead function for edge server-based offloading.
Ui Prospect-theoretic utility of user i.
Ui Satisfaction utility function of user i.
µ Correction factor of demand.

κ, ηi, ϵi Lagrange multipliers.
λ Loss aversion parameter.
ω The weight of potential function.

m,n Sensitivity parameters.
Tmax
i Tolerated latency of user i.
gmax Maximum iteration cycles.

2) Case 2 for D2D’s overhead: D2D’s overhead consists of
the time consumption and energy consumption induced
by offloaded data transmission and computing at the
D2D terminal. Then, the overhead function Kdev

ij for
user i offloading to D2D terminal j can be expressed as

Kdev
ij = tupij + texeij + Etra

ij + Ecom
ij . (18)

Therefore, D2D’s overhead Kdev
i is given by

Kdev
i =

∑
j∈M

Kdev
ij . (19)

3) Case 3 for edge server’s overhead: Because of the
fragility (i.e., uncertainty of failure) of the edge server as
a common pool of resources, the overhead needs to be
discussed in a case-by-case manner. Assuming that there
is no failure of the edge server, the overhead includes the

consumption of the transmission, the time consumption
of the server computing, and the system return. Then,
the overhead function Kedg

i can be expressed as

Kedg
i = ttrai0 +

di0ρi
Fi0

+ Etra
i0 − di0Rre. (20)

Assuming that the edge server fails, users will compute
locally, but the consumption caused by the transmission
has already been incurred. Then, the overhead function
Kedg

i can be expressed as

Kedg
i = ttrai0 + Etra

i0 +K loc
i . (21)

We assume that the probability of failure is P f
i (see

Section III.C). Then, the mathematical expectation of
edge server’s overhead can be expressed as

E(Kedg
i ) =(1− P f

i )

(
ttrai0 +

di0ρi
Fi0

+ Etra
i0 − di0Rre

)
+ P f

i

(
ttrai0 + Etra

i0 +K loc
i

)
.

(22)

B. Prospect-theoretic Utility Function

In order to address the uncertainty of edge server failure
and the risk awareness of users in offloading decisions, and
considering that real-life users are not risk-neutral, we adopt
the principles of Prospect Theory [35]. Prospect theory was
proposed by D. Kahneman and A. Tversky, which is a be-
havioral model in which users make decisions under the risk
and uncertainty of the benefits associated with their choices
[30], [34]. The user’s losses and gains in prospect theory are
evaluated based on reference points. The user’s relevant utility
function is concave for gains (i.e., the user is risk averse in
gains) and convex for losses (i.e., the user seeks risk in losses).

Based on overhead functions and prospect theory, we con-
struct the prospect-theoretic utility function as

Ui =


(
Kref

i −Kedg
i

)m
, w.p. 1− P f

i

−λ
(
Kedg

i −Kref
i

)n
, w.p. P f

i

, (23)

where the reference value of user overhead Kref
i = K loc

i ,
P f
i is the failure probability of edge server, m represents the

sensitivity parameter of the yield growth function, n represents
the sensitivity parameter of the loss growth function, and λ
represents the loss aversion parameter. And, we denote “with
probability” as “w.p.” for brevity. Then, the mathematical
expectation of the prospect-theoretic utility can be expressed
as

E(Ui) =(1− P f
i )

(
K loc

i − ttrai0 − di0ρi
Fi0

− Etra
i0 + di0Rre

)m

− λP f
i

(
ttrai0 + Etra

i0

)n
.

(24)

C. Optimization Problem of Satisfaction Utility

The satisfaction utility demonstrates the user satisfaction
with computation offloading, which consists of the prospect-
theoretic utility provided by edge server-based offloading,
local computational consumption, and D2D-based offloading
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consumption. Thus, the satisfaction utility Ui can be expressed
as

Ui = E (Ui)−K loc
i −Kdev

i , (25)

where E (Ui) represents the mathematical expectation of the
edge server’s overhead in Case 3, K loc

i represents the local
overhead in Case 1, and Kdev

i represents the D2D’s overhead
in Case 2. Combining the prospect-theoretic utility function
proposed in [34] with network model, task model, load-
shifting model, and performance model, the satisfaction utility
of the RCWN can be given by

Ui =(1− P f
i )

(
K loc

i − ttrai0 − di0ρi
Fi0

− Etra
i0 + di0Rre

)m

− λP f
i

(
ttrai0 + Etra

i0

)n −
(
tloci + Eloc

i

)
−
∑
j∈M

(
tupij +

dijρi
Fij

+ Etra
ij + Ecom

ij

)
.

(26)
Our objective is to maximize the satisfaction utility function

of each user, which can be formulated as

P1: max
di,βi

(Ui) (27)

s.t. E(Ui) ≥ 0, ∀i ∈ N , (27a)

toffij ≤ Tmax
i , ∀i ∈ N , j ∈ M∪ {0}, (27b)

βi ∈ [0, 1], ∀i ∈ N , (27c)∑
i∈N

βi ≤ 1, (27d)

Eres
j ≥ Emax, ∀i ∈ N , j ∈ M. (27e)

Here, di represents the distribution of offloading strategies
(i.e., the amount of offloaded data), βi represents the set
of resource allocation ratios, Tmax

i represents the tolerated
latency of user i, and j ∈ {0} represents the approach of edge
server-based offloading. The constraint in (27a) indicates that
the prospect-theoretic utility is always positive. (27b) indicates
the tolerance level of system latency. (27c) and (27d) ensure
that the total computational resource allocation of one user
or all users does not exceed the edge server capacity. Finally,
(27e) ensures that the residual battery energy Eres

j of the D2D
terminal after D2D-based offloading is not less than a specified
threshold value Emax.

Note that two types of utility functions are used in this
paper, i.e., prospect-theoretic utility function and satisfaction
utility function. The prospect-theoretic utility function charac-
terizes users’ valuation of available offloading options during
decision-making, incorporating both the inherent uncertainty
and subjective perception of potential gains when choosing
between local computing and offloading. This function com-
prises two key elements, i.e., the gain component and the loss
component, both derived from prospect theory principles. The
satisfaction utility function quantifies users satisfaction with
the system computation offloading performance, and consists
of the prospect-theoretic utility provided by the local overhead,
the D2D’s overhead, and the edge server’s overhead.

It should be noted that network density in this paper refers
to the size of the amount of computational data in a single
region, and the change in network density is reflected as a

transition between computing-intensive and computing-sparse
regions. User demand refers to the computation offloading
service required by a single user to accomplish time-sensitive
and computing-intensive tasks in a computing region. Higher
user demand implies that the amount of data to be offloaded
is larger, and the corresponding computing region will shift
to a computing-intensive region. Computing-intensive regions
require a large number of computational resources and high-
performance devices, and limited resources often bring more
uncertainty. At this time, the failure probability of the edge
server increases. Continuing to offload data to the edge
server will significantly reduce the user satisfaction utility.
To guarantee the optimal satisfaction utility, we dynamically
adjust the resource allocation rate and the offloading policy.
Each user follows the best-response dynamics, completes the
data transmission based on the optimal decision in the Nash
equilibrium, and finally returns the result to the user device.

V. UTILITY FUNCTION MAXIMIZATION

A. Problem Decoupling

Since the optimization problem in Eq. (27) includes integer-
constrained variables, continuous variables, and nonlinear
terms, the problem is a mixed integer nonlinear programming
(MINLP) problem. This is a NP-hard problem, which is dif-
ficult to solve directly using traditional optimization methods.
To solve the MINLP problem, we decompose this complex
problem into two sub-optimization problems. The first one is
the optimization problem of computational resource allocation,
where we use a Lagrange multiplier method to optimize the
resource allocation scheme on the computational resource
allocation ratio. The second one is the updating problem of
the computation offloading strategy, where we design a game-
theoretic algorithm for strategy updating.

We first optimize the computational resource allocation
policy to reduce the computational time consumption of the
edge server. Notably, we find that reducing the computational
time consumption on the edge server (i.e., index j = 0) can
increase the satisfaction utility based on Eq. (26). Thus, the
first sub-problem P2 can be formulated as

P2: min
βi

texei0 = min
βi

di0ρi
βiF

(28)

s.t. βi ∈ [0, 1], ∀i ∈ N , (28a)∑
i∈N

βi ≤ 1, (28b)

where (28a) ensures that the total allocation of computational
resources does not exceed the capacity of the edge server, and
(28b) indicates the constraint on the computational resource
allocation ratio.

The second sub-optimization problem P3 on the computa-
tion offloading strategy can be formulated as

P3: max
di

(Ui) (29)

s.t. E(Ui) ≥ 1, ∀i ∈ N , (29a)

toffij ≤ Tmax
i , ∀i ∈ N , j ∈ M∪ {0}, (29b)

Eres
j ≥ Emax, ∀i ∈ N , j ∈ M, (29c)
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where (29a) indicates that the prospect-theoretic utility is
always positive, (29b) indicates the tolerance level of system
latency, and (29c) ensure that the residual battery energy Eres

j

of the D2D terminal after D2D-based offloading is not less
than the specified threshold.

B. Resource Allocation Based on Convex Optimization
To address the optimization problem P2, we construct a

resource allocation method based on convex optimization to
obtain the optimal allocation of computational resources for
each user. We transform the optimization problem P2 into
R (β1, β2, . . . , βN ) and three constraints as

R (β1, β2, . . . , βN ) =min
βi

N∑
i=1

texei0 = min
βi

N∑
i=1

di0ρi
βiF

(30)

s.t.
N∑
i=1

βi − 1 ≤ 0, (30a)

− βi ≤ 0, i ∈ N , (30b)
βi − 1 ≤ 0, i ∈ N , (30c)

where (30a) ensures that the total computational resource
allocation of all users does not exceed the edge server capacity,
(30b) and (30c) denote the upper and lower bounds of the ratio
of computational resources that can be allocated to a single
user, respectively.

We construct the Hessian matrix representation of problem
P2 by taking the second order derivative as

H =


2d10ρi/β

3
1F 0 · · · 0

0 2d20ρi/β
3
2F · · · 0

...
...

. . .
...

0 0 · · · 2dN0ρi/β
3
NF

 ,

(31)
where each element of the above matrix is a non-negative
real number. Therefore, H is a positive definite matrix. Since
the positive definite matrix and the constraints are linear in
Eq. (30), it is a convex optimization problem. According to
the theory of convex optimization, the Karush-Kuhn-Tucker
(KKT) conditions are necessary and sufficient, and finding
a solution that satisfies the KKT conditions is the global
optimal solution [36]. We use the Lagrange multiplier method
with KKT conditions to solve the optimization problem. The
Lagrange function can be expressed as

L(βi, δ) =

N∑
i=1

di0ρi
βiF

+ κ

(
N∑
i=1

βi − 1

)

+

N∑
i=1

ηi (−βi) +

N∑
i=1

ξi (βi − 1) ,

(32)

where κ, ηi, and ξi are the Lagrange multipliers. The KKT
conditions are given by

−di0ρi/β
2
i F + κ− η + ξ = 0,

κ
(∑N

i=1 βi − 1
)
= 0,

∑N
i=1 βi − 1 ≤ 0,∑N

i=1 η (−βi) = 0, −βi ≤ 0,∑N
i=1 ξ (βi − 1) = 0, βi − 1 ≤ 0,

κ ≥ 0, η ≥ 0, ξ ≥ 0.

(33)

By combining the stationarity condition, the primal feasi-
bility condition, the dual feasibility condition, and the com-
plementary slackness condition from Eq. (33), and assuming
that the equality constraint is active (i.e.,

∑N
i=1 βi = 1), the

internal solution can be simplified as follows.

κ =

(∑N
i=1

√
di0ρi

)2
F

, i ∈ N . (34)

Further, we obtain the closed-form solution (i.e., optimal
resource allocation ratio) under KKT conditions as

β∗
i =

√
di0ρi
κF

=

√
di0ρi∑N

i=1

√
di0ρi

, i ∈ N . (35)

Based on the closed-form expression in Eq. (35), we can see
that the optimal resource allocation ratio β∗

i is closely related
to the amount of user’s offloaded data. As the amount of user’s
offloaded data increases, the optimal resource allocation ratio
β∗
i also increases.

C. Computation Offloading Strategy

We propose a computation offloading strategy based on
a non-cooperative game theory. We use G = {N ,S,Z} to
represent the game model. Here, N represents the set of
mobile users participating in the game, the total strategy space
S represents the strategy distribution of users in a Cartesian
coordinate system, i.e. S = d1×d2× . . .×dN−1×dN , where
di = {di0, di1, . . . , dij}, i ∈ N , and Z represents the total
system satisfaction utility, which is the sum of the satisfaction
utility values of all participants, i.e. Z =

∑
i∈N Ui.

The game aims to obtain an appropriate strategy to achieve
the Nash equilibrium condition, under which the decision
change of each participant will not affect the satisfaction utility
function [37]. For a given state, the potential function of the
game represents the trend of utility change among all users
with different strategies offloading to the edge server or an
idle D2D terminal. For a potential game, we have

Z
(
di,d−i

)
−Z

(
d′i,d−i

)
= ω

(
Φ
(
di,d−i

)
−Φ

(
d′i,d−i

))
,

(36)
where di represents the offloading strategy of user i, d′i
represents the updated strategy of user i, d−i represents the
set of offloading strategies except for user i, ω represents
the weight of potential function, Φ(di,d−i) represents the
potential function, and Z(di,d−i) represents the total system
satisfaction utility (i.e., the sum of satisfaction utility values
for all users) with strategies di and d−i.

Consider an exact potential game, i.e., ω = 1. Then,

Z
(
di,d−i

)
−Z

(
d

′

i,d−i

)
= Φ

(
di,d−i

)
− Φ

(
d

′

i,d−i

)
.

(37)
The above equation shows that when the user’s strategy is
updated, the changes in the total system satisfaction utility
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function and the potential function are equal. The difference
of the potential function is expressed as

Φ (d′i,d−i)− Φ (di,d−i)

=
∑

i∈N ,di∈(d′
i,d−i)

Ui (di)−
∑

i∈N ,di∈(di,d−i)

Ui (di)

=Ui (d
′
i)− Ui (di) +

∑
i∈N ,di∈d−i

Ui (di)−
∑

i∈N ,di∈d−i

Ui (di)

=Ui (d
′
i)− Ui (di) ,

(38)
where Ui (di) represents the satisfaction utility of user i with
the offloading strategy di. Therefore, the proposed game is an
exact potential game (EPG) and satisfies the conditions of a
Nash equilibrium.

We then propose a computation offloading strategy named
game-theoretic cooperative offloading strategy (GTCOS),
which is introduced in Algorithm 1. The GTCOS algorithm
is summarized as follows.

According to the state of RCWNs, we first calculate the
optimal computational resources to be allocated at each step,
i.e.

F ∗
i0 = β∗

i F, (39)

where β∗
i represents the optimal resource allocation ratio.

Then, the user iterates the strategy (e.g., edge server-based
strategy or D2D-based strategy) and observes the change of the
utility function by game theory. The user takes its maximum
value as the best response and uses the strategy at this point
as the iterative strategy. This procedure is repeated until the
strategy satisfies the Nash equilibrium condition (i.e., every
user has no more updated responses). The iterative strategy di
is given by

di =

{
d′i, if Ui(d

′
i,d−i) > Ui(di,d−i), i ∈ N ,

di, otherwise.
(40)

The set of optimal offloading strategy d∗i is given by

d∗i = di = {di0, di1, . . . , dij}, i ∈ N , (41)

and Nash equilibrium offloading strategies S∗ are given by

S∗ = d∗1 × d∗2 × . . .× d∗N−1 × d∗N . (42)

It should be noted that although computation offloading
exhibits strong potential for practical deployment in RCWNs,
its large-scale adoption remains dependent on the continuous
advancement of communication and computing infrastruc-
tures, as well as breakthroughs in key networking technologies.
Therefore, the evolution of computation offloading should be
regarded as an incremental process that co-develops with the
maturity of the underlying infrastructure.

In practical vehicular networking scenarios, network topolo-
gies are inherently complex and highly dynamic, which
introduces several challenges to real-world implementation.
Communication links between vehicles are often affected by
occlusions caused by obstacles such as buildings, bridges,
and large vehicles, particularly in dense urban areas, lead-
ing to intermittent connectivity and D2D signal degradation.
Moreover, frequent handovers resulting from high vehicular

Algorithm 1: GTCOS: A game-theoretic cooperative
offloading strategy.
Input: mobile users set N = {1, 2, 3, ..., N}, idle

users set M = {1, 2, 3, ...,M}, offloading
strategies S = d1 × d2 × . . .× dN−1 × dN ,
game model G = {N ,S,Z}, iteration cycles
g = 0, maximum iteration cycles gmax, and
other algorithm parameters.

Output: optimal allocation of computational resource
F ∗
i0 and Nash equilibrium offloading

strategies S∗.
1 initialization;
2 while each user i, i ∈ N do
3 calculate β∗

i and F ∗
i0 by Lagrange multiplier

method (see Section V.B);
4 obtain initialized offloading strategy S and

Fij , j ∈ M∪ {0};
5 calculate Ui(di,d−i) by Eq.(26) and Eq.(35);
6 select new strategy d

′

i satisfies
Ui(d

′
i,d−i) = argmaxj∈M∪{0}Ui(di,d−i);

7 if Ui(d
′
i,d−i) > Ui(di,d−i), ∀i ∈ N then

8 update di = d′i;
9 else

10 di = di;
11 end
12 g = g + 1;
13 end
14 repeat steps 2-13 until the algorithm converges or the

number of iteration cycles g = gmax;
15 return d∗i = di;
16 obtain Nash equilibrium offloading strategies

S∗ = d∗1 × d∗2 × . . .× d∗N−1 × d∗N .

mobility can exacerbate communication instability, causing
link interruptions, transmission latency, and potential packet
loss. Additionally, the operation of RCWNs requires the
collection of real-time vehicular data, such as location and
driving behavior, which raises serious concerns about user
privacy and data security. Ensuring secure, anonymous, and
privacy-preserving data exchange in such a dynamic and
decentralized environment remains a significant challenge for
practical implementation.

D. Complexity Analysis

We generate the user’s computation offloading policy via
a distributed iterative low-complexity algorithm. For the opti-
mization problem P2, the computational complexity depends
on the complexity of the Lagrange multiplier method and
the number of algorithm iteration cycles. According to Eq.
(35), the solution process involves traversing N elements for
square root and summation operations, so the computational
complexity of the solutions for optimal resource allocation is
O(N), where N is the number of users involved in resource
allocation. Thus, the computational complexity is O(N × g).
For the optimization problem P3, we perform the following
analysis. According to the best-response dynamics, we denote
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TABLE II
THE SIMULATION PARAMETERS

Parameters Value
Transmission channel bandwidth 10 MHz
computational capacity of user [5, 7]× 109 CPU cycles/s

computational capacity of edge server 3× 1010 CPU cycles/s
Signal transmit power of user {10, 30} dBm
Gaussian white noise power −114 dBm

Packet data size [10, 20] Mb
Processing density 100 CPU cycles/bit

Tolerated latency of user [0.5, 1]s
Sensitivity parameter {0.1, 0.2, · · · , 0.9, 1.0}

Loss aversion parameter {0.2, 0.4, · · · , 1.8, 2.0}
Correction factor of demand function 1.5× 10−10

the computational complexity of a single convex optimization
solution as O(A). Considering that there are N users in the
RCWN involved in the computation offloading, and at the
same time the algorithm needs g iteration cycles to converge
to the Nash equilibrium, the computational complexity is
O(N × g × A). In summary, the computational complexity
of the GTCOS algorithm we proposed is O(N ×g× (A+1)).
Since O(A) is much larger than O(1), the computational
complexity is reduced to O(N × g ×A).

In large-scale scenarios, to enhance system manageability
and computational efficiency, we partition the overall net-
work into several sub-regions and deploy dedicated edge
servers within each region, thereby constructing multiple non-
overlapping small-scale network sub-scenarios. Within these
localized areas, we assume that signaling delay between nodes
can be neglected to simplify model analysis and optimization.

VI. SIMULATION AND ANALYSIS

We conduct simulation study to analyze the convergence
performance of GTCOS algorithm, and also to illustrate the
impact of critical system parameters on the offloaded data and
failure probability. We further provide performance compari-
son between GTCOS algorithm and other methods.

A. Parameter Setting
In this simulation, we consider an RCWN scenario con-

sisting of an edge server at the base station, and 20 randomly
distributed mobile users with computational requirements with
high-reliable and low-latency tasks (e.g., video conferencing,
virtual-reality games, etc.), and 10 idle users are D2D termi-
nals for task offloading. The transmit power of mobile users is
set to a constant value selected from the set {10, 30}. Although
the randomness and time variability of task arrivals were not
explicitly incorporated during the model construction phase,
we fully considered the stochastic nature of task arrivals in
the experimental design and simulation process (i.e., the data
packet sizes were randomly sampled within a given range), in
order to more accurately reflect the behavior of system under
dynamic conditions. The detailed parameter setting is listed in
Table II.

B. Performance Analysis

1) Convergence Performance: To ensure the reliability of
our proposed GTCOS algorithm, we first analyze its conver-
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Fig. 2. Variation of offload data for different users.
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Fig. 3. Variation of satisfaction utility for different users.

gence performance. Regarding the case of six mobile users,
Fig. 2 shows how the number of iteration cycles affects the
amount of offloaded data for each user. It is observed from
Fig. 2 that the number of offloaded data first increases, then
experiences dynamic changes, and finally keeps unchanged.
This is because when the number of iteration cycles is rela-
tively small, each user can obtain gains through offloading its
tasks to the edge server, and thus the amount of offloaded
data increases as the number of iteration cycles increases.
As the number of iteration cycles continues to increase, the
user demand and the probability of server congestion increase,
which leads to the dynamic changes of the number of offloaded
data. For each user, as the number of iteration cycles increases
up to a threshold, the state of each user converges to a Nash
equilibrium, and thus the amount of offloaded data remains
unchanged.

Fig. 3 shows how the number of iteration cycles affects the
user satisfaction utility. We can see from Fig. 3 that the tread
of change is similar to that in Fig. 2. This can be explained as
follows. At the beginning of iteration, increasing the number
of iteration cycles can increase the satisfaction utility of each
user via offloading its tasks to edge server. When the number
of iteration cycles becomes bigger, the edge server cannot
execute all tasks, and thus these tasks will be executed locally
or offloaded to nearby D2D terminal for handling, which
leads to the dynamic changes of the number of satisfaction
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Fig. 4. Average offloaded data convergence for all users.
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Fig. 5. Total system satisfaction utility convergence of the GTCOS algorithm.

utility. When the number of iteration cycles further increases,
the system converges to the Nash equilibrium and thus the
satisfaction utility of each user remains unchanged.

Regarding the case of the total 20 mobile users requiring
task offloading, Figs. 4 and 5 show that both the amount
of average offloaded data and total system satisfaction utility
tend towards constants. This also indicates the convergence of
the GTCOS algorithm. Note that the confidence intervals are
shaded in these figures and the confidence level is 95%.

Figs. 6 and 7 illustrate the impacts of different numbers of
mobile users on the amount of offloaded data and the total
system satisfaction utility. Fig. 6 shows that as the number of
mobile users increases, individual user can offload less amount
of data to the edge server or D2D terminals. This is due to the
fact that when too many users enter the computing region, the
large number of computational tasks can cause the congestion
of resource constrained system. Fig. 7 shows that as the
number of users increases, the total system satisfaction utility
increases. However, a careful observation from Fig. 7 shows
that the average satisfaction utility of individual user decreases
as the number of users increases. This is because for limited
system computational resources, the allocated resources of
individual user decrease with the increase of the number of
users.

The curves in Figs.2 to 7 illustrate that the system sat-
isfaction utility (i.e., the sum of user satisfaction utility)
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Fig. 6. Variation of average offloaded data with different users.
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Fig. 7. Variation of total system satisfaction utility with different users.

varies with system parameters. Note that the user satisfaction
utility is modeled based on prospect theory from economics.
Within the framework of prospect theory, users are risk-aware.
Specifically, due to concerns about potential failures of edge
servers, users tend to proactively avoid risks when making
decisions.

In the initial phase, the probability of edge server failure in
computing-sparse regions is relatively low, and users, driven
by risk perception, tend to prefer offloading to edge servers.
Thus, both the local and D2D’s overheads decrease. We can
see that the user satisfaction utility ascends as the values of
local and D2D’s overheads decrease in the second and third
items of the user satisfaction utility in Eq. (25). When the
computing region becomes related intensive, the edge server
has a high failure probability, and thus the users are more
inclined to execute tasks locally or via D2D terminals. This
phenomenon will lead to an increase in the overhead function,
thereby resulting in a decline in the user satisfaction utility.

In summary, the user satisfaction utility exhibits a “rise-
then-fall” trend as the system evolves dynamically, eventually
converging to a Nash equilibrium. In fact, the final utility
has increased from the initial period. This is because, in the
initial period, the prospect-theoretic utility made a significant
contribution, but due to the substantial increase in the proba-
bility of failure, the prospect-theoretic utility declined rapidly.
Therefore, from the overall trend of changes in the utility
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Fig. 8. Offloaded data with different sensitivity parameters and different loss
aversion parameters.
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function, the final utility has increased from the initial period.
This process reflects the evolutionary dynamics of the trade-
off between risk awareness and resource utilization within the
system.

The heat maps in Figs. 8 and 9 show the impacts of
the sensitivity parameter m and the loss aversion parameter
λ on offloaded data and failure probability. Increasing the
sensitivity parameter could increase the yield section of utility
in Eq. (23) (i.e., Kref

i − Kedg
i ), which motivates users to

offload computational tasks to the edge server. However, as
the sensitivity parameter increases, the failure probability of
the server also increases. When the loss aversion parameter
increases, users will reduce the loss to ensure a smaller value
of the loss section in Eq. (23) (i.e., Kedg

i − Kref
i ), and thus

they will more willing to execute the tasks locally rather than
offloading them to the edge server. This will decrease the
probability of server failure. Note that our method is based
on offloading as much data as possible to a high-performance
server, while ensuring an acceptable server failure probability.
As a result, there is a trade-off on the failure probability by a
careful selection for the sensitivity parameter m and the loss
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Fig. 10. Impact of the number of users with task requests on total system
satisfaction utility.

aversion parameter λ [30], [31]. With careful observation from
Figs. 8 and 9, we find that when m=0.4 or m=0.1, the failure
probability P f

i maintains at a low level. Under the settings of
the parameters m=0.4 and λ=1.0, we can guarantee a higher
value of the satisfaction utility function and also increase the
amount of offloaded data with a lower probability of server
failure.

2) Efficiency Analysis:
In order to validate the efficiency of our proposed GTCOS

algorithm, this section compares and analyzes its performance
with the following three benchmark methods.

All centralized in MEC servers strategy (ACMEC): The
ACMEC scheme considers that all computation offloading
tasks use the edge server-based offloading strategy, and sets
the task offloading ratio and resource allocation ratio to fixed
values (i.e., di = 0.5×Di and βi = 1/N ).

D2D-based offloading strategy (D2D): The D2D scheme
considers that all computation offloading tasks use the D2D
terminal-based offloading strategy and sets the task offloading
ratio to a fixed value (i.e., di = 0.5×Di).

Uniform allocation of computational resources strategy
(UACR): The UACR scheme considers that all computation
offloading tasks use the offloading strategy of the joint edge
servers and D2D terminals, and sets the task offloading ratio
and the resource allocation ratio to fixed values (i.e., di =
0.5×Di and βi = 1/N ).

Since users have the feature of random mobility, the number
of users changes dynamically in the communication range of
the edge server. Thus, we explore how the number of users
affects the total system satisfaction utility under the fixed
setting of the number of idle devices, as shown in Fig. 10. We
can see from Fig. 10 that as the number of users increases,
the total system utilities increase under these three algorithms
(except for the D2D scheme). This is because the positive
value of our satisfaction depends in part on the expectations
of the edge servers, so there are no expectations for D2D
scheme. It is notable that our GTCOS algorithm can increase
the total system satisfaction utility nearly by 20% compared
to the other three algorithms. It can be explained as follows.
As the number of users increases, each user can obtain the
edge network resources to improve satisfaction utility and
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Fig. 12. Time consumption of the single task in different scenarios.

thus the total system satisfaction utility increases. However,
as the number of users further increases, the edge network
resources cannot satisfy the requirements of all users, and thus
the total system satisfaction utility is kept unchanged. Under
our GTCOS algorithm, users can fully take advantage of edge
server-based and D2D-based offloading for achieving the task
offloading and resource allocation.

Since the edge server has a stable power supply from a
directly connected power source, we only need to consider
the system energy consumption at mobile users and idle D2D
terminals. Thus, the system energy consumption is expressed
as
∑

i∈N Ei. Fig. 11 shows how the number of users affects
system energy consumption under these four algorithms. It
can be seen that the system energy consumption under each
algorithm increases with the increase of the number of users.
Note that compared to the other three algorithms, our GTCOS
algorithm reduces the system energy consumption nearly by
10%. The reason behind these phenomena can be summarized
as follows. The ACMEC and D2D schemes cannot utilize the
resource allocation advantages of jointly considering the edge
server and D2D-based offloading strategies, and thus a larger
amount of energy is consumed for executing each task. In the
UACR algorithm, the fixed resource allocation scheme allows
the edge server to consume a limited amount of the system
energy. The GTCOS algorithm takes into account the dynamic
resource allocation such that the system consumes relatively
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Fig. 13. Average offloaded data convergence for all users.
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Fig. 14. Total system satisfaction utility convergence of the GTCOS algo-
rithm.

little energy. Under our GTCOS algorithm, users can also fully
take advantage of edge server-based and D2D-based offloading
for conserving system energy.

Fig. 12 shows the time consumption performance of the
single task under different algorithms. Since the latency re-
quirement standard for vehicular network is no more than
50 ms, and that for online gaming is less than 100 ms, the
time consumption of all algorithms shown in Fig. 12 can
satisfy the requirements of latency standard. Note that the time
consumption of our proposed GTCOS algorithm is a little bit
higher than that of the baseline algorithms. The reason can
be explained as follows. The ACMEC and D2D schemes do
not execute subsequent offloading strategy updating, and only
require resource allocation to accomplish the task execution.
Their time consumption of task is mostly within 25 ms. The
UACR algorithm integrating two offloading algorithms does
not execute dynamic resource allocation. Therefore, it has
a lower time consumption of task. Our proposed GTCOS
algorithm adds the process of dynamic resource allocation and
strategy updating, which gains a better total system satisfaction
utility at the cost of sacrificing time consumption.

We then scaled up the experimental size of the edge network
with 100 mobile users. Figs. 13 and 14 show the convergence
(within 12 iteration cycles) of the GTCOS algorithm.
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VII. CONCLUSION

This paper studied the computation offloading by a joint
design of D2D and edge server for high-reliable and low-
latency services in RCWNs. We first formulated the computa-
tion offloading as a multi-user collaborative resource dynamic
management optimization problem, which fully addresses the
non-uniform distribution of computational resources and the
dynamic changes between computing-intensive regions and
computing-sparse regions. We further proposed a dynamic
offloading update strategy based on game theory to solve such
an optimization problem. The simulation results show that our
proposed GTCOS algorithm can achieve higher total system
satisfaction utility and lower system energy consumption in
comparison with the benchmark algorithms.

In future work, we will further use Markov model or
real trace-based evaluation to investigate the time-varying
characteristics of D2D link and task arrival rates in order to
enhance the model’s ability to capture load fluctuations in real-
world scenarios. Then, we plan to incorporate a more rigorous
model using queuing theory (e.g., M/M/1/K models) or server
utilization thresholds to increase the realism and generaliz-
ability of the approach. To further improve the scalability
and robustness of the system in environments with a large
number of users, we propose to adopt distributed protocols or
asynchronous game update mechanisms.
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