
Enhancing 5G Network Slicing: Slice Isolation via
Actor-Critic Reinforcement Learning with Optimal

Graph Features

Amir Javadpour∗‡∗∗, Forough Ja’fari†§, Tarik Taleb∗¶, and Chafika Benzaı̈d∗∥
∗Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, 90570, Finland

∗∗ICTFICIAL Oy, Espoo, Finland
†Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

‡a.javadpour87@gmail.com §azadeh.mth@gmail.com ¶tarik.taleb@oulu.fi ∥chafika.benzaid@oulu.fi

Abstract—Network slicing within 5G networks encounters two
significant challenges: catering to a maximum number of requests
while ensuring slice isolation. To address these challenges, we
present an innovative actor-critic Reinforcement Learning (RL)
model named ’Slice Isolation based on RL’ (SIRL). This model
employs five optimal graph features to construct the problem
environment, the structure of which is adapted using a ranking
scheme. This scheme effectively reduces feature dimensionality
and enhances learning performance. SIRL was assessed through
a comparative analysis with nine state-of-the-art RL models,
utilizing four evaluation metrics. The average results demonstrate
that SIRL outperforms other models with a 70% higher coverage
rate of requests and an 8% reduction in damage resulting from
DoS/DDoS attacks.

Index Terms—5G, beyond 5G, network slice, slice isolation,
Reinforcement Learning (RL), Distributed Denial of Service
(DDoS), and security.

I. INTRODUCTION

Network slices are independent virtual networks that share

physical infrastructures in 5G. Different users use these virtual

networks to serve their requests for specific resources and

services [1, 2]. Denial of Service (DoS) and Distributed

DoS (DDoS) attacks [3, 4] are some of the security threats

targeting these slices [5, 6]. In these attacks, the adversary

sends flooded traffic to one of the network nodes, and that

node cannot provide its services. As a result, we can say that

the network slicing process faces two main challenges: (1)

How to maximize the number of slices, which are supported

by a specific physical infrastructure and (2) How to reduce

the impact of DoS/DDoS attacks against the slices.

Mapping the virtual networks on the shared physical net-

work is a kind of Virtual Network Embedding (VNE) problem,

which tries to map a set of weighted graphs (i.e., virtual

network) on another weighted graph (i.e., substrate network)

considering the capacity of the nodes and links [7, 8]. Several

researchers have proposed optimal mapping strategies for the

first challenge. However, according to the authors’ best knowl-

edge, none considered the second one. Sattar and Matrawy [9]

considered slice isolation for protecting the slices from DDoS

attacks. However, the first challenge is not considered in

this work. As a result, in this paper, we aim to provide

slice isolation for 5G networks, wherein both challenges are

addressed [10].

We propose an actor-critic Reinforcement Learning (RL)

model called Slice Isolation based on Reinforcement Learning

(SIRL) to cover the two above-mentioned challenges. RL is

a machine-learning approach wherein an agent explores the

problem environment and interacts with all its different states.

In each state, the agent observes the features of that state and

can act. Then the agent will be rewarded for helping it find the

optimal solution [11, 1]. The environment of some problems

is too broad, and some actions are not possible in certain

states. Actor-critic RL models define some policies to help

the agent improve its learning performance [12]. This paper

makes significant contributions, outlined as follows:

• Introducing an enhanced actor-critic RL model that incor-

porates innovative features to isolate the slices effectively.

• Devising a technique to decrease the environmental foot-

print of the RL model, thereby enhancing its efficiency.

• Assessing the performance of the proposed model

through a comprehensive comparison with various estab-

lished RL models using four distinct evaluation metrics.

The remaining sections of this paper are organized as fol-

lows: In section II, a comprehensive review of various RL ap-

proaches proposed for addressing VNE problems is provided.

section III introduces our novel RL model and outlines the

algorithms used for establishing the problem environment. The

performance of our proposed model is assessed in section IV

through a comparative analysis with multiple RL models. The

paper is concluded in section V.

II. RELATED WORK

This section provides an overview of various RL models

proposed for mapping virtual nodes onto substrate nodes.

Notably, in recent work by Yao et al. [13], a novel RL model

named CDRL was introduced to address VNE problems.

CDRL incorporates three critical features for each substrate

node: CPU capacity, cumulative bandwidth of adjacent links,

and node degree. Similarly, Yao et al. [14] introduced an

alternative model named RDAM, which also leverages the

aforementioned features of CDRL. However, RDAM intro-

duces an additional feature: the average distance to other

nodes, enhancing the model’s mapping capabilities. Moreover,

Cao et al. [15] contributed to this field by presenting an RL

model built upon the foundation of CDRL. This model, while

979-8-3503-1090-0/23$31.00 © 2023 IEEE

retaining the core features of CDRL, integrates an extra feature

about security levels. This additional feature enhances the

protection of both network slices and substrate nodes within

5G networks.

Jiang and Zhang [16] proposed an RL model that considers

each virtual node’s security level in solving the VNE problem.

We call this model VNEQS, short for VNE for Quality of

Service and Security. The features representing a substrate

node in VNEQS are the CPU capacity, the sum of adjacent

links bandwidth, the delay, and the safety level.

Lu et al. [17] proposed a RL model, MLRL, for software-

defined networks. MLRL finds the optimal mapping solution

for two-layer virtual requests. The first layer request acts

as the substrate network for the second layer request in a

two-layer request. Three topological features are considered

in MLRL for modeling the environment: degree centrality,

closeness centrality, and betweenness centrality. Then, a vector

consisting of the CPU capacity, the sum of adjacent links

bandwidth, and the topological features is considered for each

substrate node. Li and Lu [18] also proposed a similar RL

model, called DRLVNE, with two extra features: the average

distance to the other nodes and eigenvector centrality.

In a novel approach, Zhang et al. [19] introduced an actor-

critic RL model that employs a graph convolutional neural

network for automatic feature extraction from the environment.

This model is aptly named GCNNRL (Graph Convolution

Neural Network with RL). Within the context of GCNNRL,

features of interest encompass the CPU capacity of individual

substrate nodes, the available bandwidth for substrate links,

the requisite CPU capacity of virtual nodes, the required

bandwidth for virtual links, and the successful mappings of

virtual nodes and links.

Similarly, Yan et al. [20] contributed an innovative deep

RL model, A3CGCN, designed to tackle the VNE problem

autonomously. Notably, A3CGCN leverages a graph convolu-

tional network to extract both substrate and virtual network

features. The core features shaping the model’s environment

include the maximum CPU capacity of substrate nodes, the

maximum cumulative adjacent link bandwidth among sub-

strate nodes, the remaining capacity and cumulative adjacent

link bandwidth for each substrate node, a binary indicator

reflecting whether a previous virtual node of the current

request has been mapped onto a substrate node, the required

CPU capacity and cumulative adjacent link bandwidth for each

virtual node, and the count of virtual nodes within the ongoing

request that remain unmapped.

Dolati et al. [21] proposed a deep RL model called Deep-

ViNE, wherein the substrate network graph is encoded as an

image considering the spatial locality property. Some features

of the virtual and substrate nodes are considered to create this

image. The required CPU and a binary value, which indicates

whether or not the virtual node is mapped, are the features

considered for each virtual node. The required bandwidth

between every two virtual nodes is also considered. Moreover,

the CPU capacity of each substrate node and a binary sequence

that indicates which virtual nodes are mapped on are also

considered in DeepViNE.

Wang et al. [22] proposed a RL model, called PNVNE, for

solving VNE problems, which utilizes an attention mechanism

that selects the most suitable substrate nodes; hence, the model

can focus on them. The remaining CPU capacity, the sum

of the bandwidth of the adjacent links, and the minimum

and maximum available bandwidth of each substrate node

are considered in PNVNE. The requested CPU capacity, the

requested bandwidth of the virtual links, and the minimum

and maximum requested bandwidth are the features for each

virtual node.

The A2CRL model presented by Troia et al. [23] focuses

on mapping slice requests in 5G networks, emphasizing accep-

tance decisions and incorporating various features. However,

it lacks consideration for DoS/DDoS damage and faces chal-

lenges with suboptimal state sizes. In response, we propose

a novel RL model that addresses these limitations, enhancing

security measures and optimizing state size.

III. PROPOSED MODEL FOR SLICE ISOLATION

Providing slice isolation has two aspects: (1) covering an

optimal number of slice requests and (2) protectively mapping

the slices. These aspects are shown in Figure 1. The circles

in this figure are the virtual nodes, and the colors specify the

requester. For example, the blue circles are the virtual nodes

that belong to the fourth user’s request. The numbers inside the

circles and on the links specify the required CPU and band-

width capacities, respectively. In Figure 1a, the fourth user

is completely unsatisfied. This is because one of the virtual

nodes related to its request is not mapped due to resource

limitations, the other mapped virtual node (the crossed circle)

cannot handle the whole request. As a result, we can say that

the fourth user does not receive the service. The other three

users are completely covered. However, they do not get the

service when the adversary launches an attack against PM1.

The virtual nodes mapping in Figure 1b is more acceptable

because the fourth user is also covered, and when PM2 is

under attack, the nodes related to that user are not involved.

Finally, Figure 1c shows a better situation, where only two of

the users are affected by the attack.

Considering the definition of slice isolation suggested by

Sattar and Matrawy [9], we define slice isolation as any

security mechanism that can protect a slice from the threats

targeting the other slices. Therefore, the meaning of slice

isolation is not limited to securing the links. Preventing the

impact of a DDoS attack against slice A on slice B can also

be considered slice isolation. For example, assume that slice A

and slice B are mapped on the core network so that they have

a shared substrate node C. If an adversary launches a DDoS

attack against C to cause damage to slice A, slice B is also

indirectly affected. This paper focuses on the slice isolation

mechanism to separate the slices to reduce the DoS/DDoS

attack damage.

In our proposed SIRL model, we aim to map as many

slice requests as possible while keeping their availability at an

(a)

(b)

(c)

Fig. 1. An example of considering two aspects of slice isolation (1) covering a maximum number of slice requests and (2) securely mapping the slices: (a)
Considering none of the aspects, (b) Considering the first aspect, (c) Considering both aspects.

acceptable level. Our proposed model works based on RL con-

cepts. We have chosen actor-critic RL as our learning model

because the learning environment is too wide, and we need to

limit the valid actions according to our constraints. Actor-critic

models are a good candidate for such environments.

The main strategy in SIRL is (1) considering appropriate

network features to help the agent find optimal mapping

solutions that lead to both the maximum possible number

of successfully mapped requests and the minimum possible

DoS/DDoS damage and (2) reducing the state size of the

environment to improve the performance. The details of SIRL

are described in what follows.

A. Action space

The agent in a RL model interacts with the environment

to learn all its different conditions. In other words, the agent

explores the environment to realize its state and then performs

an action that transfers the environment from the current state

to another valid state. In our case, the substrate network is

the environment. The agent receives a single virtual node and

is responsible for selecting one of the substrate nodes to be

the host of that virtual node. Selecting one of the substrate

nodes to host the current virtual node is the action. The agent

chooses a number from 1 to N that indicates the index of

a substrate node, on which the current virtual node must be

mapped.

Considering this action space, whenever the number of

passed steps reaches the total number of virtual nodes, one

episode of the learning phase will be finished.

B. Environment states

The agent in a RL model interacts with the environment

to learn all its different conditions. In our case, the substrate

network is a weighted graph that must be provided to the

agent. A graph has many different features, such as the nodes

and link weights and the way they are connected. However,

the dimensions of the environment states must be fixed. For

example, if a network consists of N nodes and we represent

it to the agent by an N × N array, the trained model is not

suitable for suggesting the solutions for a network consisting

of N ′ (N ̸= N ′) nodes. Therefore, we have to specify the

features and the dimension of data that represents a state

in our environment exactly. Moreover, we cannot pass the

whole parameters of the network to the agent because it is just

helpful for a single network that receives specific requests at

specific times. As a result, there is a need to extract appropriate

network features that can generally model the network.

Our first strategy is to represent the network with an optimal

set of features. Five initial features are considered in this

regard:

• F1F1F1: The remained CPU capacity of each substrate node.

• F2F2F2: The sum of the adjacent links remained bandwidth

of each substrate node.

• F3F3F3: The number of virtual nodes that are currently

mapped on each substrate node.

• F4F4F4: A binary value for each substrate node that indicates

whether or not that substrate node can host the current

virtual node.

• F5F5F5: The importance value of each substrate node.

Some existing RL models in this field have considered the first

two features (i.e., F1 and F2) [17, 19]. However, the last three

features (i.e., F3, F4, and F5) are suggested by SIRL. The

number of currently mapped virtual nodes on each substrate

node helps the agent determine the DDoS vulnerability of that

substrate node. Assume that there are two substrate nodes

with the same features, but one has 3, and the other has 5

mapped virtual nodes. In this case, when the agent selects the

latter substrate node and receives a low reward according to

the DDoS damage, it can determine the result based on this

feature. We have also considered the state of validity of a

substrate node for hosting a virtual node. It helps the agent

to determine which substrate nodes are currently valid for

hosting. The last feature is the importance value of a substrate

node. We define the importance value of a substrate node

as the sum of the essential values of its adjacent links. The

importance value of a substrate link is also defined as the ratio

of the remaining CPU capacities of its endpoints to the number

of substrate links that have a shared substrate node with that

substrate link.

The second strategy SIRL employs involves optimizing the

state space size, essentially focusing on the count of potential

states, to enhance learning performance. Let’s consider an

illustrative scenario to underscore the state size’s significance.

Imagine an environment with four distinct states and two

possible actions. In this setup, the agent needs to grasp

and adapt to eight unique situations within this environment.

Let’s presume the environment modeling isn’t optimal and is

represented with eight states instead. Consequently, the agent

is tasked with comprehending and navigating through 16 sce-

narios. The training duration for the latter model significantly

exceeds that of the former. This example vividly illustrates

the pivotal role played by the number of states in determining

the learning efficacy of an RL model. In instances where

models possess a continuous state space, the potential states

an agent might encounter are closely tied to the size of the

state space. For instance, discretizing a continuous state into 5

bits results in 32 distinct states within that environment. As a

result, our approach revolves around minimizing the state size

by introducing a novel representation of the environmental

states. This strategic reduction in state size serves to enhance

the efficiency of the RL model’s learning process To the best

of our knowledge, in the current RL models in the field of

mapping virtual nodes on the substrate node, the environment

is passed to the agent with the numeric form of the features.

For example, suppose that the capacity of the substrate nodes

in a network is represented as {5, 4, 4, 10, 2, 3}. This repre-

sentation has some weaknesses. Since different networks have

different capacities, one must consider the greatest capacity to

dedicate enough memory for the environment state. In other

words, each substrate node may vary from 1 to 10; hence,

we may have 106 different states. This weakness also exists

in the normalized features. The normalized features are float

numbers that vary from 0 to 1. Assuming that the float numbers

are presented with 64 bits, there may be 646 different states

in this environment.

When a single model is trained, it can be used for different

networks. It would be useless if we do not consider the model’s

generality. Now we explain the new form of representing

these numbers. We can rank the nodes by CPU capacity in

a network with six substrate nodes. So, the substrate nodes

can be represented as {4, 2, 2, 5, 0, 1}. So, each substrate node

may vary from 0 to 5, and only 66 different states may be

available for the agent. As a result, SIRL uses the ranking

of the substrate nodes for each initial feature to generate the

final features and create the environment state. This procedure

is shown in Algorithm 1, where F ′
i is the set of the ith feature

values, which is generated based on Fi. A simple sorting

algorithm is presented in Algorithm 1 for making it readable.

However, in the implementation phase of SIRL, we can use

any sorting algorithm instead.

C. Reward function

When the agent takes action within a given state, it subse-

quently receives a reward that serves as an evaluative measure

for its generated solution. The reward function is paramount

in any RL model, as it offers the agent a suitable guidance to

navigate the problem-solving process. In alignment with our

specific objectives of enhancing the coverage of slice requests

and mitigating the adverse effects of DoS/DDoS attacks, it

becomes imperative to integrate both the count of successfully

mapped requests and the extent of DDoS damage into the

reward function. By incorporating these factors, the reward

function aligns with our overarching goals and steers the agent

Algorithm 1 The procedure of generating the set of final

features in SIRL

Require: Fi, the set of the values of the ith initial feature
Ensure: F ′

i , the set of the values of the ith final feature
S ← an empty array
for 1 ≤ j ≤ N do

S ← S + {{j, Fi[j]}}
for 1 ≤ j ≤ N do

min ← j
for j ≤ k ≤ N do

if S[k][2] < S[min][2] then
min ← k

temp ← S[j]
S[j] ← S[min]
S[min] ← temp

F ′

i ← an empty array
for 1 ≤ j ≤ N do

F ′

i ← F ′

i + {j − 1}
if j ̸= 1 and S[j][2] = S[j − 1][2] then

F ′

i [j] ← F ′

i [j − 1]
return F ′

i

toward actions that lead to optimal solutions. This holistic

approach captures the dual essence of expanding the network’s

utility by accommodating more requests and bolstering its

robustness by minimizing the impact of malicious attacks, thus

empowering the RL model to address the intricacies of the

problem at hand effectively.

Since SIRL cannot predict future requests due to their

random times and features, the remaining resources can serve

as a metric for mapping ability. The sum of the remaining

bandwidth of the substrate links is an excellent metric for es-

timating the remaining resources. We excluded the remaining

CPU capacity of the substrate nodes from the reward function

because mapping solutions consume the same amount of CPU

capacity. However, the link bandwidth may be different in

different mapping solutions. According to this definition, a

network’s remaining resource capacity can be calculated as

Equation 1, where N is the number of substrate nodes and

rlc(i, j) is the remained capacity of the link between the ith

and the jth substrate nodes.

Re =
N
∑

i=1

N
∑

j=1

rlc(i, j) (1)

The other metric for defining the reward function in SIRL is

the maximum number of virtual nodes mapped on the substrate

nodes. This metric helps the agent avoid mapping a large

number of virtual nodes on a single substrate node. This metric

must be calculated by Equation 2, and only when the whole

virtual nodes of a request are mapped. In this equation, N is

the number of substrate nodes, and smv(i) is the number of

successfully mapped virtual nodes on the ith substrate node.

Ma = max
1≤i≤N

smv(i) (2)

If the agent maps the virtual node on an invalid substrate node,

it receives an infinitely negative reward. According to these

definitions, we defined the reward function of mapping the jth

Algorithm 2 The procedure of training the agent in SIRL

Require: S, the substrate network
Require: episodes, the number of training episodes
Ensure: ac, the trained model
ac ← initialize the actor-critic model
for 1 ≤ e ≤ episodes do

moves ← The number of virtual nodes
move ← 0
while move < moves do

state ← the environment state from Algorithm 1
action ← the optimal action from ac
s ← action
v ← move

Map the vth virtual node on the sth substrate node
reward ← Reward(s, v) ▷ Equation 3
Update ac based on state, action, and reward
move ← move + 1

return ac

virtual node on the ith substrate node as Equation 3, where α

is the condition of having the last virtual node of a request.

Reward(i, j) =

−∞, If mapping is invalid

Re − Ma, Else if α

Re, Otherwise

(3)

An agent’s complete process during the training phase is

described in Algorithm 2.

IV. EVALUATION

To evaluate the performance of our proposed RL model

(i.e. SIRL), we simulated different network topologies in

Python. PyTorch is used for implementing and training the

RL models. We compared the performance of SIRL against

nine existing RL models, namely CDRL [13], RDAM [14],

VNEQS [16], MLRL [17], DRLVNE [18], GCNNRL [19],

A3CGCN [20], DeepViNE [21], PNVNE [22], and A2CRL

[23]. Since we focus on the features and their ability to model

the environment, we considered the same reward function for

all the simulated models to remove the impact of the rewards

on the model’s performance. Moreover, all the models are

trained with the same number of episodes (i.e., 2000). For

VNEQS, we have considered the number of virtual nodes

mapped on each substrate node as the security level.

Eight different network scenarios are considered in the sim-

ulations, and we tried to make them cover different topological

features. For example, in one of the scenarios, the network

topology is a complete graph, or in another one, we have a leaf

node and a node connected to more than half of the nodes. In

the simulated scenarios, several random slice requests arrive at

random times and last for a random time. However, not more

than 20 requests are active at a time. Each request contains at

least 2 virtual nodes, which are connected randomly together.

Each virtual node and link require a random resource capacity

of less than 7 and 5, respectively. While all the features of

the requests are random, the exact requests are passed to the

models for a fair comparison.

We analyzed four metrics in the simulation results to fairly

evaluate the performance of SIRL compared with the other

models. The analysis is presented as follows.

A. Requests acceptance ratio

The acceptance ratio is the proportion of successfully

mapped requests to the total number of arrived requests.

Higher values indicate better performance and goal achieve-

ment for maximizing the number of covered slice requests.

The reported results in Figure 2a are the average acceptance

ratios of the different scenarios. They are categorized based

on the maximum number of requests in the network at a

time. We can see a big difference between the number of

successfully mapped requests in SIRL and the other models.

The acceptance ratio of SIRL is about 70% greater than

the average acceptance ratio of the other models. SIRL’s

acceptance ratio is also about 100% and 19% greater than the

other models’ minimum and maximum acceptance ratios. This

means that SIRL can map more requests on the substrate nodes

than the other models. It is worth noting that A3CGCN has the

best performance in terms of the acceptance ratio among the

other models, except SIRL. One of the reasons could be the

appropriate modeling of the environment in A3CGCN with a

low state size. The other reason is that A3CGCN, like SIRL,

focuses on general network features instead of complex details.

B. Required memory

The required memory for modeling an environment plays

an important role in RL models in two aspects. The first point

is that the models consuming more memory have space com-

plexity, and they are not appropriate for being implemented on

hardware with limited resources. The other important aspect

is the agent learning rate. Modeling the environment with a

large state size leads to more possible cases that an agent

can learn. Assume that the state size is s bits; hence, the

number of possible states is 2s. In each state, the agent can

perform a different actions. So, the number of conditions an

agent must consider is a × 2s. When a is fixed, one can

improve the learning performance of the agent by reducing

s. In other words, modeling the environment states with the

lowest number of bits is preferable.

Figure 2b shows the state size of different models in bits.

Since the simulations are performed in Python, the float

numbers require 64 bits. In all the cases, the number of

required bits for modeling the environment state in SIRL is

lower than in the other models. The state size of SIRL varies

from 65 bits to 187 bits, while the other models require much

more space. The difference between the state size of different

models is much more tangible as the number of substrate nodes

grows. Considering the total scale of the results, we can say

that the required memory of SIRL and A2CRL is almost fixed,

while that of the other models grows linearly or exponentially.

The state sizes of GCNNRL and DeepViNE grow rapidly as

the substrate network gets larger, and this is not suitable.

The models considering just substrate nodes features have

linear growth, and on the other hand, the models that consider

4 5 6 7 8 9 10 11
Number of Substrate Nodes

10

15

20

25

30

35

40

45

Re
qu

es
ts

 A
cc

ep
ta

nc
e

Ra
tio

 (%
)

CDRL
RDAM

VNEQS
MLRL

GCNNRL
A3CGCN

DeepViNE
PNVNE

A2CRL
SIRL

(a)

4 5 6 7 8 9 10 11
Number of Substrate Nodes

0

2000

4000

6000

8000

St
at

e
Si

ze
 (b

its
)

CDRL
RDAM

VNEQS
MLRL

GCNNRL
A3CGCN

DeepViNE
PNVNE

A2CRL
SIRL

(b)

4 5 6 7 8 9 10 11
Number of Substrate Nodes

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

M
ax

im
um

 D
Do

S
Da

m
ag

e
(%

)

CDRL
RDAM

VNEQS
MLRL

GCNNRL
A3CGCN

DeepViNE
PNVNE

A2CRL
SIRL

(c)

4 5 6 7 8 9 10 11Number of Substrate Nodes
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

So
lv

in
g

Ti
m

e
(s

ec
on

ds
)

CDRL
RDAM

VNEQS
MLRL

GCNNRL
A3CGCN

DeepViNE
PNVNE

A2CRL
SIRL

(d)

Fig. 2. The performance of SIRL compared with the other RL models. (a) regarding the mapped slice requests. (b) regarding the required memory for
modeling the environment. (c) regarding the security level of the slices against a DDoS attack. (d) regarding the required time for finding the optimal solution.

both virtual nodes and links in the state representation have

exponential growth. The state size of SIRL is nearly 95%

lower than the average state size of the other models. This

positive point claims that SIRL can be implemented on devices

with limited resources, especially for large-scale networks.

C. DDoS damage

When the adversary performs a Dos/DDoS attack against

the substrate nodes, all the mapped slices on that substrate

node will be affected. Since all the virtual nodes of a request

must collaborate, losing one of them leads to the failure

of the whole request [3, 24]. As a result, a good mapping

solution must map the virtual nodes so that attacking one of

the substrate nodes causes the lowest possible number of slices

to be unavailable. We define DDoS damage as the ratio of

the average number of requests that are affected by a DDoS

attack to the total number of requests. This metric is related

to the goal of reducing the impact of DoS/DDoS attacks. In

the simulations, we have considered that each substrate node

crashes when at least 10 end-hosts send flooded traffic toward

it. In each simulation, the adversary selects a random substrate

node in the network and commands the compromised hosts

to launch the attack against it. The average results of the

attacks and their maximum effect on the network are reported

in Figure 2c. We can see that in all the scenarios, the average

number of slices that crashed after the attack utilizing SIRL

is lower than that of the other cases. The results show that

the attacks cause about 8% lower damage to the slices when

they are mapped on the substrate network using the proposed

SIRL scheme. This is because while the reward function is

the same for all the models, the features representing the

environment in SIRL are much more related to the impact

of DDoS attacks on the network than the other features. We

can see that the reported maximum DDoS damage does not

have a specific trend. This is because of the different features

of the eight scenarios. For example, in one scenario, the agent

has to map most of the requests on the substrate nodes with a

high capacity greater than that of the other nodes. Hence, this

node is so vulnerable to attacks.

D. Time to solve

To maintain the users’ quality of experience, when a request

arrives, it must be mapped on the network as soon as possible.

Therefore, a mapping solution has to be found in an acceptable

time, and the models that solve the problem of VNE with

extravagant time are unsuitable. As a result, we also measured

the time a trained model spends solving the mapping problem.

The results are shown in Figure 2d. We can see that the solving

time grows as the number of slice requests increases. This is

because checking the mapping constraints is time-consuming,

and more conditions must be checked with more requests.

SIRL is the first or the second time-consuming model in all

the scenarios. The reason is that SIRL requires some sorting

processes to create the states in each step. The required time in

SIRL is only 0.07 seconds higher than the average solving time

of the other models. It is also worth noting that the solving

time of SIRL is about 35% lower than the solving time of

MLRL. Since MLRL considers some complex features related

to the shortest path, it requires much time. It is reasonable to

ignore the solving time of SIRL according to the satisfying

results of the acceptance ratio, state size, and DDoS damage.

V. CONCLUSION

In conclusion, this study introduces the SIRL actor-critic

RL model to address the intricate challenge of efficiently

mapping slice requests on 5G networks while upholding

high acceptance ratios and ensuring slice security. By in-

corporating novel network features and strategically reduc-

ing environmental states, SIRL demonstrates remarkable per-

formance improvements compared to existing models. The

simulation results highlight its ability to enhance acceptance

ratios and significantly mitigate DoS/DDoS damage. As we

move forward, exploring more robust topological features and

developing a post-training algorithm stand to further elevate

SIRL’s effectiveness in optimizing network slicing in 5G

environments.

ACKNOWLEDGMENT

This research work is partially supported by the Business

Finland 6Bridge 6Core project under Grant No. 8410/31/2022,

the Research Council of Finland (former Academy of Fin-

land) IDEA-MILL project (Grant No. 352428), the Re-

search Council of Finland (former Academy of Finland) 6G

Flagship program (Grant No. 346208), and the European

Union’s Horizon Europe research and innovation programme

HORIZON-JU-SNS-2022 under the RIGOUROUS project

(Grant No. 101095933) and the 6G-SANDBOX project (Grant

No. 101096328). The paper reflects only the authors’ views.

The Commission is not responsible for any use that may be

made of the information it contains.

REFERENCES

[1] A. Javadpour, F. Ja’fari, T. Taleb, and C. Benzaı̈d, “Re-

inforcement learning-based slice isolation against ddos

attacks in beyond 5g networks,” to appear in IEEE Trans-

actions on Network and Service Management, 2023.

[2] C. Benzaid, T. Taleb, P. Cao-Thanh, T. Christos, and

T. George, “Distributed ai-based security for massive

numbers of network slices in 5g & beyond mobile

systems,” in 2021 Joint European Conference on Net-

works and Communications & 6G Summit (EuCNC/6G

Summit). IEEE, 2021, pp. 401–406.

[3] A. Javadpour, F. Ja’fari, T. Taleb, M. Shojafar, and

B. Yang, “Scema: an sdn-oriented cost-effective edge-

based mtd approach,” IEEE Transactions on Information

Forensics and Security, vol. 18, pp. 667–682, 2022.

[4] C. Benzaı̈d and T. Taleb, “ZSM Security: Threat Surface

and Best Practices,” IEEE Network Magazine, vol. 34,

no. 3, pp. 124 – 133, May/June 2020.

[5] C. Benzaı̈d, T. Taleb, and J. Song, “Ai-based autonomic

and scalable security management architecture for secure

network slicing in b5g,” IEEE Network, vol. 36, no. 6,

pp. 165–174, Dec. 2022.

[6] C. Benzaı̈d, M. Boukhalfa, and T. Taleb, “Robust self-

protection against application-layer (d) dos attacks in sdn

environment,” in 2020 IEEE Wireless Communications

and Networking Conference (WCNC). IEEE, 2020, pp.

1–6.

[7] A. Javadpour and G. Wang, “ctmvsdn: improving re-

source management using combination of markov-

process and tdma in software-defined networking,” The

Journal of Supercomputing, pp. 1–23, 2022.

[8] A. Javadpour, F. Ja’fari, P. Pinto, and W. Zhang, “Map-

ping and embedding infrastructure resource manage-

ment in software defined networks,” Cluster Computing,

vol. 26, no. 1, pp. 461–475, 2023.

[9] D. Sattar and A. Matrawy, “Towards secure slicing:

Using slice isolation to mitigate ddos attacks on 5g core

network slices,” in in Proc. IEEE Conf. on Communica-

tions and Network Security (CNS). IEEE, 2019.

[10] J. Ortiz et. al., “Inspire-5gplus: Intelligent security and

pervasive trust for 5g and beyond networks,” in in Proc.

15th Int’l Conf. on Availability, Reliability and Security,

Nov. 2020.

[11] B. Recht, “A tour of reinforcement learning: The view

from continuous control,” Annual Review of Control,

Robotics, and Autonomous Systems, vol. 2, pp. 253–279,

2019.

[12] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha,

J. Tan, V. Kumar, H. Zhu, A. Gupta, P. Abbeel et al.,

“Soft actor-critic algorithms and applications,” arXiv

preprint arXiv:1812.05905, 2018.

[13] H. Yao, S. Ma, J. Wang, P. Zhang, C. Jiang, and

S. Guo, “A continuous-decision virtual network em-

bedding scheme relying on reinforcement learning,”

IEEE Transactions on Network and Service Management,

vol. 17, no. 2, pp. 864–875, 2020.

[14] H. Yao, B. Zhang, P. Zhang, S. Wu, C. Jiang, and

S. Guo, “Rdam: A reinforcement learning based dy-

namic attribute matrix representation for virtual network

embedding,” IEEE Transactions on Emerging Topics in

Computing, vol. 9, no. 2, pp. 901–914, 2018.

[15] H. Cao, G. S. Aujla, S. Garg, G. Kaddoum, and L. Yang,

“Embedding security awareness for virtual resource allo-

cation in 5g hetnets using reinforcement learning,” IEEE

Communications Standards Magazine, vol. 5, no. 2, pp.

20–27, 2021.

[16] C. Jiang and P. Zhang, “Vne solution for network

differentiated qos and security requirements from the

perspective of deep reinforcement learning,” in QoS-

Aware Virtual Network Embedding. Springer, 2021, pp.

61–84.

[17] M. Lu, Y. Gu, and D. Xie, “A dynamic and collaborative

multi-layer virtual network embedding algorithm in sdn

based on reinforcement learning,” IEEE Transactions on

Network and Service Management, vol. 17, no. 4, pp.

2305–2317, 2020.

[18] M. Li and M. Lu, “A virtual network embedding algo-

rithm based on double-layer reinforcement learning,” The

Computer Journal, vol. 64, no. 6, pp. 973–989, 2021.

[19] P. Zhang, C. Wang, N. Kumar, W. Zhang, and L. Liu,

“Dynamic virtual network embedding algorithm based

on graph convolution neural network and reinforcement

learning,” IEEE Internet of Things Journal, 2021.

[20] Z. Yan, J. Ge, Y. Wu, L. Li, and T. Li, “Automatic

virtual network embedding: A deep reinforcement learn-

ing approach with graph convolutional networks,” IEEE

Journal on Selected Areas in Communications, vol. 38,

no. 6, pp. 1040–1057, 2020.

[21] M. Dolati, S. B. Hassanpour, M. Ghaderi, and A. Khon-

sari, “Deepvine: Virtual network embedding with deep

reinforcement learning,” in in Proc. IEEE Conf. on

Computer Communications Workshops (INFOCOM WK-

SHPS), 2019.

[22] C. Wang, F. Zheng, G. Zheng, S. Peng, Z. Tian, Y. Guo,

G. Li, and Y. Yuan, “Modeling on virtual network em-

bedding using reinforcement learning,” Concurrency and

Computation: Practice and Experience, vol. 32, no. 23,

p. e6020, 2020.

[23] S. Troia, A. F. R. Vanegas, L. M. M. Zorello, and

G. Maier, “Admission control and virtual network em-

bedding in 5g networks: A deep reinforcement-learning

approach,” IEEE Access, vol. 10, pp. 15 860–15 875,

2022.

[24] A. Javadpour, F. Ja’fari, T. Taleb, and M. Shojafar, “A

cost-effective mtd approach for ddos attacks in software-

defined networks,” in in Proc. IEEE GLOBECOM’22,

Rio De Janeiro, Brazil. IEEE, Dec. 2022.

	Introduction
	Related Work
	Proposed Model for Slice Isolation
	Action space
	Environment states
	Reward function

	Evaluation
	Requests acceptance ratio
	Required memory
	DDoS damage
	Time to solve

	Conclusion

